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FOREWORD

This report derives the mapping equations for the majority of map projections
in current use, based on the unifying principles of differential geometry. The
publication of this report was sponsored by the Defense Mapping Agency,
Washington, D.C.

This report has been teviewed by Mr. R. J. Anderle, Head, Astrunautics and
Geodesy Division and Dr. Leonard Merrovitch, ESM Advisor, VPI & SU.
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- Chapter 1
INTRODUCTION

Map projection is the orderly trunsfer of positions of places on the surface of the earth
to corresponding points on a flat sheet of paper, a map. The process of trunsformation re-
quires a degree of approximation and simplification, This first chapter lays the ground-work
for the study by detailing, in o qualitutive way, the basic problem und introducing the
nomenclature of maps, Succeeding chapters will consider the mathematical tuchniqueq and

the simplifications required to obtain manageable solutions [9].*

All projections Introduce distortions in the map. The types of distortion are consldered
in terms of length, angle, and area, This chapter discusses the qualitative aspects of the prob-

lemy, while Chapter 7 deals with it quantitatively.

The coordinate systems useful in locuting positions on the earth, and on the map are
summatized, The congept of scale factor to reduce earth sized lengths to map sized lengths

Is discussed, .

Map projections may be classified i o number of ways, The principle ong is by the
fentures presetved {rom distortion by the mapping technique, Other methods of clussificn-
tiott depend on the plotting sirfuce employed, the method of contact of this surfpce with
the earth, and the orlentation of the plotting surtuce with respect to the direction’of the
sarth’s polar uxis. Finally, maps can be classified nccording to whether or not u mup cun be

drawn by purely graphical means,
The convention tor azimuth used in this volume s also introduced.
1.1 introduction to the Problem

Mup projection requires the transtformation of positions from u curved surfuee, the
earth, onto u plane surfuce, the map, in an orderly tushion, The problem occurs because of

the difference in the surfaces involved,

The model of the carth is either a sphere or spheroid (Chapter 3), These curved sur-
faces have two finite radii of curvature, The map is a plane surfaee, and a plane is character-

izéd by two infinite radil of curvature, As will be shown in Chapter 2, it is impossible to

transtorm from u surtiee of two finite radii of curvature to a surtiee of two infinite radii of
calted

curviture without introducing some distortion, The sphere and the spherobd are

i

*Numbers in bracke(s refer to the Bibliography,
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nondevelopable surfaces. This refers to the inability of these surfaces to be developed (l.¢.,
transformed) into a plane in a distortion free manner [ 8].

Intermediate between the nondevelopable sphere and the spheroid, and the plane are
surfaces with one finite and one infinite radius of curvature, The examples of this type of
figure arc the cylinder and the cone. These surfaces are called developable, Both the cyl-
inder and the cone can be cut, and then developed (essentially unrolled along the finite
radius of curvature) to form a plane. This development introduces no distortion, and thus,
these figures may be used as intermediate plotting surfuces between the sphere and spherold,
and the plane, However, in any transformation from the sphere or spheroid to the develop-
uble surface, the damage has already been done. The trunsformation from the nondevelop-
able to the developuble surface has already introduced some degree of distortion,

Considet of what an ideal mup would consist { 8],

(1) Arcas on the map would muintain correct proportion to areus on the earth,
(2) Distances on the mup would remain in true scale,

(3) Directions and angles on the map would remuin true,

(4) Shapes on the map would be the sume us on the earth.

The Impossibllity of a distortion free transformation from the nondevelopuble surface
to the plane prevents the realization of the ideal. The best u cartogrupher can hope foris
realization of one or two of these featurcs over the entire map. The other features are
subject to distortion, but hopefully to u controlled extent,

The projections of Chapters 4, 5, und 6 are the curtographer’s unswers to the problems.
In each of these projections, some of the desired features nre maintained, The distortion in
the other features will be tolerable.

1.2 Distortions |22]

Distortion is the villain ot the picce. Distortion in mups may be in area, length, angle,
or shipe,

Distortion in urca iy shown in Figure 1.2.1(2). While shupe is muintained, the area on
the map may be enlarged or diminished,

-

Distortion in length is common, and Figure 1.2.1(b) is an ilustration, Often, while the
cartographer is able to maintain true length in one direction, he cannot do so In o second
direction,

Angular distortion is also prevalent, Thus, angles on o map will not necessarlly be the
stne as their counterparts on the carth, Thus, azimuths on the map. o' will not coincide
with true azimuths' « on the earth, This is shown in Figure 1.2.1¢0).

Distortion in shape cun oceur in a numbet of ways., One ds a general chinge of shape of
the figure. A second is a shearing type of effect, Figure 121G demonstrates both of
these changes,

BT 2e N R RO R ek ph Tl 4 oo et
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Figure 1.2.1. Distortion effects
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An actual map will have combinations of these distortions, The numerical theory of
distortion will be presented in Chapter 7 of this report.

Now that we arc acquainted with the problem, the next sections in this chapter will
introduce some of the terms needed for the study of map projections before entering the
muthematics of Chapter 2.

1.3 Coordinate Systems [18]

Coordinate systems are necessary for both the earth and maps for the orderly location
of points, Two types of coordinnte systems will be considered for the earth. They nren
Cartesian system, and an angular system, For maps, the most convenient system is Curtesian,

The terrestrinl coordinate system is demonstrated in Figure 1,3,1. The origin, O, of the
system is at the center of the eurth, The x- and y-axis form the equatorial plane. The curve
oti the earth formed by the intersection of this plane with the earth’s surfuce Is the equator.
The positive x-axis intersects the curve AGN. The curve AGN s u plune curve, which is
called the Greenwich meridian, The positive z-axis coincides with the nominal axis of rotu-
tion of the curth, and points in the direction of the notth pole, N. The y-axis completes a
right-hunded coordinate system.

Any point, P, on the surfuce ol the earth can be located by the cootdinates x, y, and 2
However, since any point is constrained to e on the surfuce, the three coordinates are not
all independent. They ure related by the equation of the surfuce (Chapter 3). Thus, there
are only two independent coordinates, or two degrees of freedom,

Instead of using two arbitrarily chosen members of the set X, y, and 2 as the indepen-
dont coordinutes, it Is more convenient to use two Independent angulur coordinutes: latitude
and tongitude.

A merddian s u curve formed by the intersection of u fleticious plane containing
the z-axis and the surfuce of the earth, The Greenwich meridion hus already been mentioned,
There Is an infinity of meridians, depending on the orlentation of the cutting plane,

The use of latitude and longitude depends on locating a point on a meridian and then
focuting the meridian with respect to the Greenwich meridian, Latitude is the angular
measure detining the position of point P on the meridian BPN. Latitude is denoted by ¢,
The position of the meridian that contains I is defined by the Jongitude, N, The longitude
is the angle AOB, measured in the equatoral plane, from the Greenwich meridian,

The conventions for lutitude and longitude are as follows. Latitude is meusured plus
to the north, wnd minus to the south. Longitude is measured positive to the east, and nega-
tive to the woest,

The cireles of purallel are generated by cutting plunes parallel to the equatorial plane
which intemsect the carth, All points on the eirele of parallel have the same latitude,
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The muthematical relationships between the polar and Cartesian coordinates, as well as
the definition of the types of latitude is deferred until Chapter 3, where the sphere and the
spheroid nre discussed.

The coordinate system for the map, Figure 1.3.2, is a two dimensional Curtesian system,
The plus x-axis Is toward the east, and the plus y-axis Is toward the north. The origin, 0', of
the system will depend on the scheme of projection to be developed in Chapters 4, 5, and 6.
In most cases there will be some straight, arbitrarily chosen central meridian which serves as
the ordinate of the projection,

The object of map projection Is to transform from the terrestrinl angular system to the

map Curteslun system. Chapters 4, 5, and 6 will provide the methods for these transformations.

North

Central
/ Moridian

4

r//

el

“—— Origin, 0'

East

Figure 1.3.2. Map coordinate system
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1.4 Scole {8]

The scale of the map is the ratio of the distanice on the map to the corresponding dis-
tunce on the earth, or dm/de, 11 the distunce on both the map and the earth have the sume
units, then the scale is o dimensioniess quantity. Scale is another uspect of the orderly
transformation from curth measurement to mup measurement,

The presence of distortion requires the definltion of two types of scale: the principle
seule und the local seale,

The principle scale Is based on a meridian or paraltel which is u uniformly true scale tfor
the entiee map, It s the seale used for shrinking the spheroidol surfuce of the eorth to the
plane of the paper,

At othier pluces on the map, where distortions are present, the scnle will be different
from true seale, This Tocal seale will be larger or smaller than the principal seale, depending
on the mechanism of the distortion,

The local seale, as a function of distortion, and the principle seule may be quoted on
the legend of w map. A more usetul means is a geaphicad scule drawn in the map legend, amd
specified for the latitudes and longitudes where it applics, As an exumple, for the Mercator
projection (Chapter 8), o set of seales con be deuwn as o function of latitude, which will en-
sure the correct distanees for measuring,

The terms large seale versus small seale come from consideration of the Fruction din/de,
A seale of 1/10,000 1s u lurge seale, and 171,000,000 is o sl seale, A plan, or o map show-
ing bulldings, cultural features, or boundaries is usuatly 1710,000 or larger. A topographic
mup, which gives roads, railronds, towns, and contour lines, and other detuils hos a seale bee
tween 1710,000 and 171 000,000, Mups of a scale smaller than 1/1,000,000 ure atlas maps,
These maps delineate countrics, continents, and oceuns,

The scale Factor, S, s used in the plotting equationy of Chapters 40§, and boand s
equal to dm/de,

1.5 Classification by Feature Preserved |22

Maps miay be classificd by the feature rescued from distortion, or by the agrecment
that some distortion will simply be tolerated. This system of classitTeation divides maps

into three catagories: equal aren, conformal and conventional,

The equal ared projection preserves the ratio of areas on the carth und on the map as

“eonstant, Any part of the map bears the same relation 1o the area on the carth it represents

that the whole map bears to the total carth arca represented. Any quad eangular shaped see-
tion of the map formed by o grid of meridians and pacatiels will be equal in aren to uny other
guadrmgular area of e same map that represents an equal area ol the carth, Angles usoally
sutfer. A contraction of meridians will ive to be oftset by lengthening of parallels, or
vice versi, but the enclosed area will remain the sime, This coneept is fllustrated in Figare
LS Ly Al ol the quadrilaterals have the same are.
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A conformul projection is one in which the shape of any small surface of the map is
preserved in its original form. Care must be used in applying this concept, since it is true
only tocally, and cannot be extended over lurge surlace arens, The true condition for u con-
formal mup is that the scale ut any point is the simme In all directions, The scile will change
from point to point, but it will be independent of the azimuth at ull points. The scale will
be the same inall directions from o polnt if two directions at right angles on the earth are
mupped into two directions that are also at right angles to euch other. The meridinns und
purallels of the carth intersect at right ungles, and v contormal projection preserves this
quality on the mup. Conformal quadrilateruls are shown in Flgure 1.5.1(b). Another term
used in refering to conformal projections {s orthomorphie, or same form,

Conventional projections ure all those which are nelther equal arca mn[igonfornml.

This is not meant us o disparaging term,. Many of the conventional maps ure of great utility,
In the Gnomonie projection, the feuture preserved Is thut great clreles become stralght lines,
In the Azimuthal equidistant projection the distunce und uzimuth from the origin to uny
other point on the map is true. The Polyessd und van der Grinten projections have seen
constderuble service ns road maps. Al tha isamplied by the term conventional is that the
cartographer has been willing to sueritice the features of equal urea or conformality in order
to retain some other feature, ot to obtuin a simple, utilitatian algorithm for the projection,

1.6 Classificution by Projection Surface |22]

Only three projuection surfaces will be consldered — the plane. the cone, and the eylinder,
All projections in use today are accomplished through these, or modifleations ot these, 1t
can be argued that all projection surfices are conieals since the plane and the eylinder can be
considered ag the two Hmiting cuses of the cone, However, this mathematical nicety s not
usunlly used, and the three surfices will be considered as distinet, in most cases. Figure 1,01
shows each of these surfuces in relution to the sphere,

The planare projection surfuce can be used tor o direet transtormuation from the carth,
The projections which result are called azimuthal (Figure 1.6, L Other names in use are
zenithal, or planar projections,

Conleal projections result when o cone is used as iy intermedinte plotting surface,. The
cone is then developed into a plane to obtain the map (Figure 1.0, 1)),

At this polnt [t is convenient to introduce the coneept of the constant of the cone, 1ot
a be the radius of the carth From Figure 1,60.2, the slant height of the cone tangent to the
carth, p, s tound to be
p o= aeol ¢ (1.0.

whete ¢ 18 the latitude, Also, from the figure, d, the length of the parallel oircle AB, which
defines the cirele of tungency of the cone, iy

d = dmacos ¢, (1.6, 2)
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(n) Equal ares quadrilaterals
(b) Conformal quadrilaterals
Figure 1.6.1. Quadrilataral raprasentation
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(a) Azimuthal
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(b} Conloal

{e) Cylindrical

Figure 1.6.1, Classification by projection surfaoe
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The constunt ol the cone, ¢, Is defined from the relution between the developed cone -
urd the earth, Let,

’:.
n
i

L}
[y

0= dlp. (1.6.3)
Substitute (1.6.1) and (1.6.2) into (1.6.3)

- 2 cos ¢ .
weote ‘ !

0 = 2rsing. (1.6.4)

The constunt of the coneis c=sin @, 1t is u multiplicative tuctor that relutes longitudes on
the carth to those on the cone. Equations (1.6.1) und (1.6.4) will be beneficial in Chapters
4, §, and 6 in the investigation of the various conleal projections,

The cone may ulso be secant to the earth, This Is shown in Figure 1.6.3, where the
clreles of secuncey ure at the lutitudes ¢y, and ¢, From the similar trlangles, the ratios of
the slant heights of these respective latitudes are

Py dcos o1
P2 i Con B3

CO8 ¢y ,
= o, 6.8
(W41 ] ¢2 (1.6 )
Note in equation (1,.6,4) that as ¢ varies from 0° to 90°, 0 varies from 0° to 360°,
When 0 is 0°, then we huve a cylinder, At 0 equals 360°, we huve o plane. As was men-
tloned above, it will be useful, usually, to treat planes, cones and cylinders os separate en-
tities, rather thun lump them together in a single general approach to the problem,

Cylindrical projections ure obtained when u eylinder Is used as the intermediate plotting
surtiee (Flgure 1.6, 1(0)) As with the cone, the cylinder can then be developed nto o plane,

In Flgure 1.0, 1, a representutive position on the carth, P, is shown transformed into a

position on the projection surfuce, P’ for cuch of the projection surfaces, Chapters 4, S, und
6 will explain the methods that will affect such transformations, und produce useful maps.

1.7. Classification by Orientation of the Azimuthal Plone | 22|

As wus seen In the previous section, the option of using a tangent cone or 4 secant cone
Is 0 means of further ditferentinting conical projections. Similarly, azimuthal projections
may be classifled by reference to the point of contact of the plotting surface with the carth,

Azimuthul projections inay be classified us polar, equatorial, or obligue, When the plune
fs tungent to the curth ut either pole, we have o polar projection, When the plane is tangent
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Figure 1.6.3, Cone secant to the earth
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to the carth at any point on the equator, the projection is called equatorial. The oblique
cuse occurs when the plane is tangent at any point on the earth except the poles and the
equator, Figure 1.7.1 Indicates these three alternatives, In each case, T is the point of
tangencey.

1.8 Classification by Orientation of a Cone or Cylinder {22}

Another classification set can be defined for cones and cylinders. These plotting sur-
faces may be considered to be regular, transverse, or oblique.

The regulur projection occurs when the axis of the cone or eylinder coincides with the
polar uxis of the eurth, The transverse case has the axis of the cone or cylinder perpendicu-
lar to, und intersecting the axis of the earth, The transverse Mercator, and the transverse
Polyconic ure examples of this. 1f the axis of the cone or cylinder hus any other position in
spice, besides being coincident with, or perpendicular to, the axis of the eurth, then an
oblique projection is generated, Flgure 1,.8.1 demonstrates these three options for a simple
projection,

1.9 Projection Technique | 3], {11]

Three technlques of projection can be identified. This can serve as another scheme of
clussificution, The methods are the graphical, the semi-graphical, and the mathematical,

In uny graphical technique, some point 0 is chosen as a projection point, und the
methods of projective geometry and descriptive geometry are used to transform a point P
on the carth to a location P' on the plotting surface. An example of this is Indicuted in
Figure 1.9.1, where the point P on the earth is transformed to the oblique plane by the ex-
tension of line OP until it intersects the plane, In this example, O is urbitrarily chosen s
the projection point. Since unything that can be done graphicaily can tlso be described
mathematicully, we will not encourage gruphicul constructions. However, those projections
which are capable of u strict graphical approach will b identitied in Chapters 4, §, and 6.

Those projections termed mathematical will be those which ¢an only be produced by a
mathematical definition. No draftsman with compass and straight edge can plot them by
means ol the projection of a ray,

In between these two groups are the semi-graphical projections. However, for various
reasons, such as a varying projection point (Mercator), or a complex graphical scheme
{(Mollweide), the reasonable approach is to depend on a mathemitical procedune.

1,10 Azimuth | 7]

The angular measure of use in specitying directions on the carth and on the map is the
seimuth, The azimuth of P in relation to 1 is shown in Figure 1.10.1 for the carth. Azimuth
is measured from the narth, or the meridian through the point PLin o clockwise manner.
Azimiuth is measured the same way on the map as on the carth,
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{b) Equatorial

{c) Oblique
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Figure 1.7.1. Orientation of the azimuthal plane
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{a) Regular

(b} Transverse

(c) Oblique
Figure 1.8.1. Orlentation of a cylinder
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Figure 1.9.1. Graphical projection onto a plane
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1.11 Computer Implementation

The subject of map projections certainly has intrinsic interest. Of more importunce to
surveyors, curtographers, and all other wotkers in the field of map projections, is the avail-
ability of plotting equations, and their incorporation onto a computer program that permits
their utilization. The ultimate goal of this report is to provide Cartesian plotting equations
s a function of lutitude and longitude, and a computer program which includes the most
important of them. This will be, at the very least, a good beginning for further practical
work. ‘

After the basic concepts are derlved in Chapters 2 and 3, the actual equations for
mapping will be developed in Chapters 4, §, and 6,

The computer program In Appendix A.1 combines twenty of the most useful mup
projections schemes with the methods of providing equal area and conformal qualities, and
the methods of rotational transformation. In all cases, the latitude und longitude coordi-
nates of the earth will be input, and converted into x«, and y=plotting coordinates.

These subroutines cun be incorporated into existing and proposed progrums, The out-
put cun be suitable for plotting tables, digital/analog plotters, or CRT displuy [12], [13].

Appendix A1 includes an input guide to the computer program MAP. This will aid the
user In incorporating his values of the earth parameters and scale factor, and selecting the
required projection scheme. The method of selecting a complete grid or a collection of
points is also described,
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Chapter 2
MAPPING TRANSFORMATIONS

The process of map projection requires the transformation from the two independent
coordinutes of the carth to the two independent coordinates of the map. This chapter will
be devoted to the genenal theory of transformations. To this end, 1t will be necessary to
develop some applicable formulas of ditferentinl geometry, and apply some aspects of
spherical trigonometry//

The differential geometry of curves will give the needed rudius of curvature and torsion
of u spuce curve. The'differential geometry of surfaces wiil concern the [Irst and second
fundamental forms, and purametric curves and the condition of orthogonality, The surfuces
ol interest {n mapping are surfuces of revolution, The general surtace will be particulurized
to sutfuces of revolution (Chapter 3). The process of trunsformution from non-developuble
to developable surfaces will be conxidered, Representations of urc length, angles, und area,
us well as the detinition of the normal to the surfuce, will be glven.

The busie trangformation matrix will be derived. The conditions of equal uren und
conformality will be applied to this transformation,

The convergence of the meridluns is next considored. Finally, u rotatlon method for
the production of equatorlal, transverse, and oblique projections will be given,
2.1 Differentlal Geometry of Curves |10]

Consider the spuce curve of Figure 2,1.1, Let ¢ be an urbitrury parameter. Let the
vector to any point P, on the curve, in the Cartesian coordinate system, be

r=x(O F v+ bk, Q2.1.1)
Lot |Ar| = As, X

The unit tangent vector at point P s

Al‘ = (ll‘ = h -y LY }
A"l:A.() m 'k"; '- (n-ln-) |

Applying the chaln rule to (2,1,2), one finds

= dr i

\ hl
df ds (214
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Figure 2.1.1. Geomatry of & $pace ourve
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i ‘(ar R IR k)(—~ . (2.1.4)

Take the dot product of T with itself.

RENCRCE

2
. X 9 2 LAY

I (2.1.%)

let i
] *
{ - ]
oz ey :. .( :
ds k (24,00 i
where ks defined as the curvature, and § s the principal unit normal, ;
: . " "
Dot t with itsell and differentinte. !
' A A R
l ' ‘ - | ";
‘ R b
A d 0.
s

Chis weans that Tis peependicudar to df/ds, and, from (21,60, & Is perpendicular 1o {.
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Figure 2.1.2. Consecutive tangent vectors
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In order to obtain a right-handed triad, define the binormal vector

b={fXh. (2.1.7)

Thus, we have £ A, and b as the unit vectors at P,

B o

1t s useful nt this time to define threg types of planes intersecting the curve, These ure
the osculating, normal, and rectifying planes, The osculuting plane contyins £ and i, The
normul plane contalns i und b, The rectitying plane is defined by fund b, These planes are
displayed in Figure 2,1.3.

T

1t s usetul now to obtain the derlvatives of the unit vectors as u function of distunce
ulong the cutve. From the definition of the unit vectors, we have the relations

b=1txn
f=axbp. (2.1.8)
B bxi
From the first of (2.1.8) ‘
db _d ey -,'
s = g5 (EXim
= LE A g.f.l RN
dy X @+ Ex dy ’ (1.9 i
Substitute (2.1.6) into (2.1.9), :
A l‘
db | 5w oa dit :
ds ki X 0+ T X s v
iy db ,
i X s {(2.1.10 i
]
Dot it with itsell, and ditferentiate. I{J
i
noeho= | |
M di =
“ Jds '

Thus, div/ds s perpendicalut to i, and must e in the rectitying plane, and have the components

B yi b b, EARIY
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Flgure 2.1.3, Planes on the space curve at point P
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Substitute (2.1.1 1) into (2.1.10)

=
=

|

tX(yt+1H)

=
w

Mt xb

= —th. (2.1.12)

The constant 7 Is called the torsion. It is, essentiully, a measure of the twist of the curve,

From the lust of (2.1.8)

. 4 §xi
ds ds(GXt)
ab o any df
-FEXH'bXHE' (2.1.13)

Substitute (2.1,6) and (2.1.12) Into (2.1.13),

(‘ﬁ=_~ by _Lh
IS m X T +b X (=kit

= b + ki, (2.1.14)

Equutions (2.1.6), (2.1.13), and (2,1.14) can be urtanged in matrix form,

di/ds ‘0 -k 0|t
divjds | = | k 0 |l CARE)
df)/ds 0 ~f o]l b

These are the Frenct-Serret formulas.

The next step will be to obtain the muthematical relutions for the curvature and the
torsion,

The curvature, i general parumetric form, Is obtained from (2.1.2) and (2. 1.6,

Erer =Ry

BRI IPRL NSRRI




Tuke the cross product of f with (2.1.16)

d?r )
f X (ki) = [ X
(=k) (dﬂ

Apply the first of (2,1.8), und (2,1.2) to (2.1.17).

dr  d2r
kb= X 4 ds?
o |de oy d?r
' k ds ¥ d82|
For the general putameterizution,
dr _ dr df
s~ W Us
o2
e g_z-‘:-zgg-!/gé. +d|’ dzg
ds g2 \ds dt \ gs2

Substitute (2.1.19) and (2.1.20) into (2.1, 18),
M U SV L (d!') dr < S’)
d¢ ds d;z ds U \gs?

g
ds/

ur Jd2

P x_.._
d§ 7 age

Subaatitute (2,1.5) into (2.1,21),

iy
2
A
i1
|
H
]
1
a
!
3
13
.i
(2.1.16) é
#
4
(2.1.17 . )
i
(2.1.18) {
(2.1.19) !
(2.1.20)
(2100
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dr o d2r
df = a2
k= — (2.1.22)
dr
d¢
A similur procedure can be tollowed to obtain the torsion. Dot (2.1,12) with f.
~ogh _ 4
r=-g 0 (2.1.23)

Substitute the first of (2.1.8) into (2.1.23).

==L ix) - i
TES R (tXn)

ds p..
= XA - d—s‘- (2.1.24)
From (2.1.16
! &y
N 2
S T B
di _ _ _ds ds  d?r \
C = - S + ...‘5_ :l:i (2.1.26)
r}‘ ’
Substitute (2.1.2). (2.1.25), and (2.1.26) into (2.1.24),
(12._! .‘i: dk
_olde oy ds? ), bt ds d?r
T=\F X X k k2 ds?
1 (dr d2r> ddr
= L (dry dfry, dr (2.1.27)
k2 \ds ds? ds?

FFor the general parameterization, differentiate (2.1.20)

|
'
i
|
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3
dte o (8 e (08) 02
ds3 a3 ds ag? ds /\ gy2
Ll &4 (2.1.28)
df g3

Substitute (2.1.19), (2.1.20), and (2.1.28) into (2.1.2.1.27)

. 6
- )

k2
Substitute (2.1.5) into (2.1.29),
) (4]
a " dt g3 _
T = p . (2.1.30)
dt .

The torsion is importunt for such curves as the geodesic (Chapter 3). For plune curves,
such us the meridian curve, and the equator, r =0,

As an example, consider a plane curve [16], and let § = x, und y = y(x). The radius
vector Iy

r=xt+ yx)}, (2.1.31)

Obtain the cutvatare, by differentiating (2.1.31).

i'.‘..'. == 3 .(.l_!‘ 3 h)
dx ! * dx ? (2.1.32)
2 2

wr Ay, (2.1.33)

dx?  dx?

2
fr+ 22 (229)
_ (X (lxz |
k = 7K tu.l1.34:
LAy (. dy .)] ' Continued
[(l i 'T) Pk
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a2
%2

bl

The radius ol curvature is the reciprocal of the curvature, ‘Thus, from (2.1.34, and
tuking the magnitude,

|2
xr

f=N

=

(2.1.34)

p = 1/k
2732
dy
1 + 'a;
aty . (2,1.35)
dx?
Continuing from (2.1,33), we note that
3 dy .
ST: = :l-l—x-;'-j. 2.1.36)

Substitute (2,1.32), (2.1.33), and (2,1.36) into (2.1.30).

dy
! dx 0
dly
I ||
dx?
3
0o ¥ 5
dx?
T =— Pl 0.
, |r o dy »
kl i+ dx J

2.2 Differentinl Geometry of Surfaces | 10]

The parametric representation of u surtace requires two patameters. In general, tor the
parametrie representation of a surface by two arbitrary parameters, oy and oy, the vector to
a point on the surlaee s

ro=orog, o). (RRY
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If either of the two purameters is held constant, and the other one is varied, a space
curve results. This space curve is the purametric curve, Figure 2,2.1 gives the parametric
representation of space curves on a surface. The ay -curve is the parametric curve along
which «q is constant, and the ag-curve Is the parametric curve along which oy Is constant.

The next step Is to obtain the tungents to the parametric curves ut point P. The tangent
vector to the ay~curve is

 Br
a = Ba; (2.2.2)
The tangent to the az-curve is
= O
8 B0 (2.2.3)

The plane spanned by the vectors 8 und 83 is the tangent plane to the surface at point P,

a1 = clrve

ag - ourve

X Elgure 2.2.1. Parametric curves
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' The total Jifferentlal of (2.2.1) is
m QL or ‘
dr B doy + 3oty doas . D R24)
Substituting (2.2.2) and (2.2.3) into (2.2.4).
dr = a; do; + a; doy . 2.2.5

Armed with equation (2.2.5), we are now ready to introduce the tirst fundamental
form,

2.3 First Fundamental Form | 10])

The tirst fundumental form of u surface is now to be derived. The first fundumental
form is useful in dealing with are length, area, ungulur meuasure on a surfuce, and the normal
to the surface.

From (2.2.5)
(ds)? = dr + dr
= () day + 83 doy)(ay doy +ag dog)
= ay + a1(dey)? + 2(a; » 82) doy dog
+8y * By(dag)? (2.3
Define new variables,

E=a &
F=a *a)>. (2.3.2)
G=a *a

Substitute (2.3.2) into (2.3.1).
Ws)? = Eday)? + 2Fdagday + Gldg)? (2.3.3)
Equation (2.3.3) s the flst fundamental form of o surfaee, and this will be very useful
through the whole process of map projection. The first fundamental form will now be

applicd to Hocar measure on any surfuce,

Are length can be Tound immediately from the integration of (2.3.3). The distunce be-
tween two arbltrary points Pyoand Py on the surtuce is given by

e % s
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Py
(= f Vida)? + 2Fda;dag + Gldag)?
Py

2
L0 A daz) ,(m,)
_J;l ]/ + 2F (m * G\ g day, . (2.3.4)

Equation (2,3.4) Is useful us soon us doy /dey is defined, and will be used In Chapter 3 for
distunce along the spheroid,

Angles between two unit tangents 8y and a3 on the surface can be found by taking the
dot product of (2.2.2) and (2.2,.3) and applying (2,3.2),

. LI
cosl = o " el 235

.
=

|':

———— l35
\/m (2 (’)
sind = /T — cont 0

= |-—-F-—-
14 EG

=/ L(ﬁ'i . (2.3.7)

Deline
H = FG - I'? (2.3.8)

and substitute (2.3.8) into (2.3.7.

= ) )
sin 0 /;IE (2,39

The normal to the surfuce at point P is

! a X &

=

lay X &l

a X az

L N \
()]} sin 0 (2.3.10
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Substitute (2,3.2) and (2.3.8) Into (2.3.9),

- 8 X a; .

o WX 8

JA

Incrementul utea can be obtained by a considerution of incremental distance along the
parametric curves. Along the aj-curve, and the oy -curve, respectively,

ds; = E dey }
dsy = /G day .

(2.3.11)

2312

The urea ls

dA = ds)sg sind

= /IG daydog sind (2.3.13)
Substitute (2.3.8) into (2.3.13)

: dA = /EC ‘/Ff: doy dop

=« T doyday | o (2.3.14)

Thus, the first fundumental form has given a means to derive the arc length, the unit normal
to the surfuce at every point, und incremental ared. In conjunction with the second fundu-
mental form of the next section, it will be useful in determining the radil of curvature of
the surfuce,

As will be shown in Chapter 3, the first fundamental form for the sphere is

(d8)? = a2(dg)? + u2 cos? p(dN)? (2.3.1% K

and for the sphierold, it is
(s’ = R} (de)? + REcos?p(dn)?, (2.3.16)

When the chosen purameters are such as to ensure that the purametric curves are
orthogona! to each other, a simplification of the first fundamental form occurs. When

LS STV IR R R B a b, R ey e
o,
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orthogonulity is present, from (2,3.2), 8; and a3 are perpendicular, and F=0. The first
fundamental form is then '

(ds)? = E(dey)? + G(dap)?, (2.3.17)

- 2.4 The Second Fundamental Form [10]

The second fundumental form provides u way to evuluate principal directions und
curvatures of the surfuce. We will deal with normal sections through the surfuce, und derive
formulus Tor the curvature of' u normal section, A normal section implies that the notmal
to the parametric curve and the surfuce colncide,

We begin with u formula for curvature, For the parametric curve, take the dot produet
of it with (2,1.5).

= -k, (2.4.1)

Substitute the derivative of (2.1,2) into(2.4.1).

= (2.4.2)

2 I

Since € and i are orthogonal, 1
feh=0. (2.4,3) ,

Substitute (2.1.2) Into (2.4.3), *
&h=o0. (2.4.4) :

Tuke the derivative of (2.\4.4).

d (Lll’ -)
- r.— 8 = ]
ds \dqs ~ " ¢
du? ds s
- b
“y -
deoodiv o die (2.4.5)

ds s dy?

Substitute (2.4.2) into (2.4.5).

I I AT R T e L
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dr . di .
35 s K. (2.4.6)
From the total differential,
‘\ - ‘—81 ..@-r- bl
e dr St day + S daa .47
L dit = 3, doy + 5et; doy . (2.4.8)
; Substitute (2.4.7) and (2.4.8) into (2.4.6),
"1 (c')a\ doy + By dozz) (Bm day + Ber; da;)
2 k = - 2.4.9)
i (ds)?
i Substitute (2.2.2), (2.2.3), und (2.3.3) into (2.4.9).
J/
ay Bty (dey ) + 83 B (dop) +(a, P + o P dey doa
k = o 2.4100
Bday)? + 2Fdegday + Glday)?
»
The second fundamental form is defined as
[y _af}- 2 [} ..ajj. 2 “:;'
a, Bty (deoy )t + 8y g {da) !
+(a; Bets + a3 f)m) dovp deg 24,11 y
Thus (2.4.10) is \
".
k= Second fundumentul form. ;
st fundamentol form : 3

(t remainy to define the coefticients of the differentials by the second fundamental o ,
form. From the definitions of the tangent and normul vectors

N ar
'1 1] ——
ooy

fioeon
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Take the derivative of (2.4.12)

_Eﬁ...a_t..‘.‘. 32'.

TG n Boqaaj_

By definition, the second fundumental quantities are

Substitute (2.4.14) into (2.4.13),

%r
O dax

by = -fi

Substitute (2.3.9) into (2.4.15),

a X 8 dir

] dexydoyy

i

by

it

o i .
Jﬁ(i)a.aa, X l|> %

px 0%y Yy

dojdeyy  duydey doyday

ax oy g

A
\/]T Aoy ooy doy

oo
I doey dag
Define
1. = by,
M = hyy = by
N = by,

Substitute (2 17) into (24,100

(2.4.13)

(2.4.14)

(2.4.15)

(2.4

(2417
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‘= L(day)? + IMdogde; + N(day)?
E(day ) + 2Fdeg dag + Glden)?

(2.4.18)

We now ltave the curvature in tél'ms of the first and second fundamental forms, The
next step will be to muximize (2,4.18) to obtuin the principal directions. Let g = ay(ay)
and A =t day /dey , where X is an unspecified parametric direction. From.(2.4,18)

2
L + 2M (99‘3) + N (52
- 2

da o
K = 1 |
dey doy

Ko+ 2F((l&1)+0( L\'|) !

SR SR AL L o (2.4.19)

To find the divections for which k is un extremum, tuke the derivative of (2.4.19) with
respect to A, and set this equal to zero,

dk . _QM+2INN) (L +2MN+ NADQF + G
N (s 2En + GAY) (E + 2P\ + GAY)?
=0 (2.4.20)

Substitute (2.4.19) into (1.4,20),

dk . (M +INN) O KQEF+2GN)

AN T (2 GAY) (1 + 20N + GAY)

= (),
Sinee the denominator will nevet be zero,
M+ INA - KQEF+ 260 = 0

= Mt NA
k= 5o (24.21)

Write (2.4.19) oy

K = (1+ MA) + MM+ NN
TEETO F MEAGN

KICE+ X))+ AEF 1 GM] = (L +MA) + A(M+ NN,
Substitute (2.4, 20 into (2,4,22),

e~k MRS YA e AR e GG Mk skazn ¥ers
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K[(E+F\) + (F+GMA] = (L+MN) + MF+GOkK
K(E+FN = L+ MA

= Lt MA
k= (2.4.23)

Cross mudtiply (2.4.21) and (2.4.23) to 'orm a quadratic In N which will yield the prineipal
directions.

”

( (L+ MO+ GN)

(M + NM(E + FN)

LE + FMX + GLA + MGM = ME + MFX + NEA + NFA?
A (MG~ NF) + (LG ~NE)A + (LF=MF) = 0, (2.4.24)

The solutions to (2.4,24) ure

LY =(LG = NE) # /(LG =NE)? = 4(MG =~ MF)(LF ~ ME) ’
i TG = MF) . (2429
2 B K

Apply the theory of equations for o quadeatic to (2,4.24),

(LG=NE) ,

)\[ + k'z = (MG__NF) (2-4-2())
(LF - MI)

My = LML (2.4.27)

The two prineipal directions will now be shown to be orthogonal. Let

doey

N ‘(u’&f) (2.4.28)
Sos

s _(3%7) (2.4,20)

Let 0 be the angle between these two directions, and let deand v be infinitesimal vectors
along Ay and Az, The cosine of the angle between the vectors iy

o) = v b
cos O = e " s
=4 (2.4.30)

The total differentinl cun be developed
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dr = 5%'7 day + 5%’—2 dag (2.4.31)
! B = (.-g; Sy + (%2- Sa . (2.4.32)
L ’{ Substitute (2.4.31) and (2.4.32) into (2.4.30).

£

¢ . Br o 3 o, 2

E ' cos 8 [(Bou d ) day Sy + (Bul a«;) day Bexy

ar ., or) B, e e
(ao:; aal)dazml +<8a2 am)dozzbaz] X Tbs (2.4.33)

Substitute (2.3.2) into (2.4.33).

BN 2 BN S Sk i S e e L o el

8oy dayy dsbs

cosf = -s-%—s [Eda) S + Flday Sz + doaBag) + Gelag oz
_cos0_ o _.L_[ (.6_3 d__z.) ~<6az> doy
deey ey dsds E+F Su dey *a Sy qu (2.4.34)
: Substitute (2.4.28) and (2.4.29) into (2.4.34),
Sg?iifn - ﬁ [E + FO\ +A3) + GO\ AT (2.4.35)
Substitute (2.4.26) and (2.4.27) into (2.4.35).
w80 _ [y, p QG=NE) . (LF-ME)
MG = NF © Y MG = NF

= ... [EMG - ENF -~ FLG + ENF + FLG - EMG =0 f

dsés | MG - NF ‘ |

: i

Thus, ¢ = 90°, und the principal directions ure orthogonal, Stree the principal directions are i
orthogonal we can choose the parametric curves to coincdde with the directions of principal i

curvature. This provides udditional simplification. . i
The equations ol the lines of curvature are
A=A =0, (2.4.30)

If the lines of principal curvature coincide with the parametrie lines, from (2.4.36), and
(2.4.26)

e - SR
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MG - NF= 10
| - (2.4.37)
LF - ME = 0}
From orthogonality, F =0, This means from (2.4.37)
MG = 0
ME = 0, ' (2,4.38)
For un uctuul surfuce, neither E nor G can be zero, Thus trom (2.4.38), M= 0,
: Substitute =M =0 into (2.4.21) und (2.4.23)
ko= E (2.4.39)
ke = - (2.4.40)
1 - Equations (2.4,39) m;d (2.4.40) give the means of abtaining the principal curvature of
3 u surtuce from the fimt and second fundamental quuntitien, This technigque will be applied

to the surfaces of interast to map projection,

2.8 Surfaces of Revolution | 10] '

Surtuces of revolution ure formed when a space curve is rotuted about un axis, The two
parumeters needed to define o position on the surface of revolution will be 2, and X, Figure
2.5.1 gives the geometry for the development.

Lot Ry = Rp(2). The position of the point P is

r= Ry eosAt + Rgsin + 2k . (2.5.1)
From (2.2.2) and (2.2.3) -;
. |
4 = 9—(.:19 Ccos Al + 9%—1 sin ] + k (1.5.2) ‘;
2 0z !j
8 = —=Rp sinAT + Ry cosAl. (2.5.3) :

From (2.3.10), tive normal to the surface s

¥
Boe . B X8 (2.5.4) ‘
JEG = . .
{
| \
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=4

Figure 2.5.1. Geometry for a surface of revolution
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The first fundamental quantities are, from (2.3.2) i
2 2 2 g

o (B o (B9 n e s (20) , ;
E —(az CosZ A + 37 sinzA + 1 =1+ ™ (2,5.5)
oR aR
F=-=— cosARpsinX + == sinARy cosA = 0 (2.5.6) |
oz 0z

G = Rfsin2\ + R cos2 A
- R} (2.5.7)

1 3 k :

3Ry . B8Ry

a X @ = B2 Cos A 5 sinh | i‘f

~Rp sinA Rg cos A 0

it

=RpcosAl = Ry sindAj

Q‘_{Q ) ?&2 2 ) &
+<Ro 5y CO8 A+ Ry m sin? \) k |
= -Rp (cosM + sin A} = a% f(). (2.5.8)

Substitute (2.5.5), (2.5.6), (2.5.7), and (2.5.8) into (2.5.4),

IRy -
Ro (t,‘k)h' ALk sin AT~ ) l\)

n az
. S [
dRq
w Vi (5)
IRy
cos Al + sinAf - :—)-Q k
= - e (2.5.9)

Ry

Vi (2
oz

Y
H

]

viraRAM L Ratic) e Ot 1af A Ind
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P The second fundumental quantities are given by (2.4.16), (2.4.17), and (2.5.9).

"
\"f L:——-

H
i
P
o [D
~
o
[2}

2
osAl + 3" Ro sin 7\3)
2

oz
\/ ((')Ro)
| + | ==
0z

2 2
3Ry cos2A + 9”Rg sin? A
_ op? 9z’

L 7
- \/ i'.*&)
. : b+ ( oz

= ——————, (2.5.10

& (cosM + sinAJ - 2By fc)

20N

_(-3Rg R )
( ™ sinAl + " cos A}

/ cos Al + sinAj —(a—;)!{;(l)k
. - (2.5.1h

D / (am,)i Continued
L | +{—
_ oz
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(—QB-Q sinAcosA + 9-59- sin A cos A) 5
g 3z dz , g
&) 5
'+ (5
i 2 i 'a
: N = —-a—.[. . ﬁ

DA

= —(~Rp cos N — Ry sinA])
QOSM + sinAf - %}Q E)

T
l+<az

et oy irm A TR e T S =
et s 2 o o il
=R e T o yizs:

Ry cos2 A + Ry sin? A

N e e o e 8 e i
P = %

aRo)

Vi o+ (== ;
! ( oz :
i

R i

N = —— (2.5.12) J

Vi (1) |

02 'L

:

To obtain the curvature, substitute 12.5.5), (2.5.7), (2.5.10) and (2.5.12) into (2.4,39) o

and (2.4.40). e

0% Ry }

022 i

‘ Vi (L) |
bt ( 07

3
alm)
b (i)z

2
L el (2.5.13)

Note that this is comparable to (21,3,

;i
|




-?_~=
'S
N

(‘ Rg
aR
) 1 + a—;)
2 R%
= ! : (2.5.14)

1/ aRo)
Ro Y1+ ( oz

From Figure 2.5.2, we can find the relations in the meridian plane,

cosd = o=+ k. (2.5.15)

Substitute (2.5.2) and (2.5.5) into (2.5.15)

cos o =
/ 9.59)’
L+ (az

| . (2.5.16)

(93-9 cos A + 9—%" sin A} + ﬁ)

From the figure

R; = R (2.5.17)

Lliminating cos ¢ between (2.5.16) und 2.51MN

2
/ aR(,) .
= —! 2.5,
R; = Roy/ 1 + ( ” (2.5.18)

R, is the second radlus of curvature, and is the inverse of (2.5.14).

A N . e e meas e aihagiadd ' b -
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Figure 2.5.2. Geometry of the meridian curve
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2.6 Developable Surfaces | 10]

It was méntioned in Chapter | that there are two types of surfuces of interest to map
projections: developable und non-developable. One way to make the distinction between
the two is to consider the principal radil of curvature. Non-developable surfuces have two
finite radil of curvature, Developable surfaces have one finite and one infinite radius of
curvature. This section will expund on the differences between the two types of surfuces.
This section will consider the two developable of surfaces of interest to mapping, the cone
und cylinder, and the non-developuble surface the sphere.

The surfuces which are envelopes of one-parameter families of plunes ure called devel
opable surfaces. Every cone or cylinder is an envelope of u one-parameter family of tungent
plunes. Moreover, every tangent plane hus o contact with the surface along a straight iine.
Consequently, a developable surfuce is swept out by a family of rectilineuar generators.

It will be necessury to consider the tangent plunes for cones, cylinders, and spheres,
and note thelr churacteristics,

For the cone, consider arbitrary parameters u and v, Let the origin of the coordinate
system be ut the vertex of the cone. The purnmetric equation of the cone is

r= vg(u). {2.6.1)
From (2,2.2) and (2.2.3)

a = vq(u) (2.6.2)

a = q. (2.0.3)

Tuake the cross product of (2,6.2) und (2.6.3).
a; X a3 = vqu) X qQu). (2.0,4)

It q(u) and §(w) are not collinear, the point (u, v) is regular, and the tangent plane has the
equation, nfter the substitution of (2.6.1) und (2.60.4)

[r — vg(u}] « vaqu) X qlu) = Q
to=q X qu) =0, (2.0.5)
Thus, (2.6.5) depends only on u, and the family of tangent planes is a one-parameter fumily,
For u eylinder with elements paratle! to a constunt vector o, the parametric equation is
r = glu) + ve, (2.0.0)

Applying (2.2, and (2.2 to (2.2.0),

- e —
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8 = 4w - (2.6.7)
m = 0. (2.6.8)

Taking the oross product of (2.6.7) and (2.6.8)
a X a3 = qCu) X o, 2.6.9)
From (2.6.6) and (2.6.9), the equation of the tangent plane is
[r ~qu) ~ve] *qu) Xec=D0
r+q(u) X o= q(u)* ¢u) X e, (2.6.10)
Aguin, (2,6.10) depends only on the parameter u,

A different situation occum when a non-developable surface such as the sphere is
considered, Let the two parameters be ¢ and A\, The equation of the surface is

¢ = a(cos A cos¢f +sin\ cos¢f + sin ¢f() . (2.6.11)

Using (2.2.2) and (2.2.3),
8 = a(~cos ) sin ¢f — sin A sin @ + cos ok) . (2.6.12)
8 = a(-sin A cos ¢f + cos A sin o)) (2.6.13)

Taking the cross product of (2.6.12) and (2.6.13)
t ! k
o X 83 = adl~coshsing —sinhcos¢ cos¢
~ginhcosp  cosAcos¢g 0
= a2{~cos A cos? ¢f — sin A cos? ¢}
~K(cos? X vin ¢ cos ¢ + sin2 A sin ¢ cos¢)]
= -pd[cos A cos2 @t + sin \ cos? @] + con¢ sin k) . (2.6.14)
From (2.6.11) and (2,6.14), the tangent plane to the sphere has the equation
[r ~ u(cos X\ condi + sin A cos gl + sin ok))

v [=a2 (cos A cos? @t + sin X cos? 7 + cosp singk] = 0. (2.6.15)

Equation (2.6.18) depends on two purameters, and thus, the sphere is a non-developable
surfuce.

alih
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2.7 Transformation Matrix |20), [19)
A transformation matrix will be derived which will permit the transformation from
¥ positions on the earth to places on the map, This will entail relating the fundamentul quan-
: tities of the earth and the plotting surfuces by means of a Jucobiun determinant.
i
: Consider the earth surface, with purametric curves on it defined by ¢ and A, The
: fundamental quantities will be defined as ¢, f, and g The coordinates of point P on the
: carth, as in Figure 2.7.1, are given functionully os
X = x(@N)
vy = yigN >, (2.7.D
7= 4 N)

Consider next un arbitraey projection surfuce, with purametric curves defined by the
parameters 0 and v, with the fundumental quantities ', F', and G'. The position of the
polnt P" on the plotting surfuce in Figure 2.7.2 Is given functionally by

X = Xauv)
Y o= Y(uv) P, (2,70
4= F0uv)

The parumetric curves on the enrth are related to those on the projection surtuce

u o= ulgy )
v = vig A, (27,0
For the carthyand for any plotting surfuce, only two conditions ure to be satistied, ‘The

projection must be (1) unfgque, and (29 reversible. A polnt on the carth must correspond to
only one point on the map, and vice versa, This requires that

¢ = pluv)
} . (2.7.4)
Ao A v
Substituting (2.7.30) Into {2.7.2)
X o= Xulg, A vig, M
Yo Yuth, A vig, M
7 Llutd, Mvigoal (2.7.%)

In this form, the surface will have the tundamental quantities E, Foand G,

e Ser—terLTREE T
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Figure 2.7.1. Paramatric representation of point P on the sarth
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+
Plu,v)
i
o' Pume Y
:,‘i
X il

Figure 2.7.2. Parametric representation of point P on the projection surface




53

Differentiate (2.7.5) with respect to o, and N,

DX _ 2% Bu 4 3X A |
o du dp  Ov O
3X . AX Au , 8% v
A u On v OA
BY _ Y du , BY v
20 0w dp ov 09 L’
By oY LAY v [
o u X 9v A
0Z . OL Du . DL
¢ u-0¢  ov ¢
Qz- = -{')—:14 Q.u LY ?—Z‘- g!
aN Ou dn v oA

From Section 2.3

2 2
Lo (axy (v}, (a2
¥ (acﬁ) ! (:)«/s) * <a¢>

,:=d‘<">\+i)_!l _7_..11
96 On . 0p On 09 ON

< (23X Y 02,
G (ox) <o>\> ¥ (m\)
Substitute (2.7.6) into (2,7.7)

[ o= (ax i)u) oo AX B AN Dy (ax Bv)
du d¢ Sodu D¢ v i v 1@

2
(";Y au> b oo OY DU X v («)Y s
au ¢ “ du ﬂzf) dy i hY a‘ﬁ

(]

2
<az (')n> U LAX 11 L I (Q_I_. gx)
g = Du g v 0 dy 09

(2.7.6)

(21D

(2.7.8)
Continued

o et Aandaded s L b e

S NE" £ X S

!
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3X du X du X dv (axav)
it G"(uax Y250 N v o T \av o
2 2
o)y, (v
ud u 9N dv D v A
L 2 2
! a_zzm) 0Z du Z By (aza_)
’;;,‘f +(ua *2 uoNadva * v O\
p,(ﬁj@sau+1&@_x(auax+auax)+(e.&>’@m
u/ 0¢ 0 u dv \dp oA  OA d ov/ 0¢ oA
2
() o, ooy
u/ 9¢ 9 u av

(@_uéx+geax>+(u)’@.v_ax
0 BN AN D dv/ ¢ OA

0
0¢ I\

2 2
{2 Q! ! "-a-E-_v 7! -Q-Yo ot
K ((.m) ) +.a¢ a¢l +(a¢> G
Do (BB (DY, B BYY oy (B 2V (o
! (aM)"‘ +<¢a "3 aqb)r*(awx)"

] 2
p (O e g UV g V)
G ((’)7\) 15+ 2 PN I +(ak> Gy

Equation (2,9.10) may be written {n matrix notation as

2
@uéx) (a_z)_xil!.
+ )

(2.7.8)

(2.7.9)

(2.7.10)

S A, it §

TR, A~ .
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r b] e 2 —y
(QL‘) oy (@.‘{)
I o9 op a¢ 2¢, .
= |2 du Budy , Budv B W
F 8¢ O\ 39 ON ' G\ 3¢ a6 AN Fy (2.7.11)
G 2 e
(Q_g) 5 Qu By (glj
L \OA EITEDN w

The transtormation muatrix in (2.7.11) is the tfundamentul matrix for mapping transformations.

To facilitate the detivations of Chapters 4, 8, und 6, it will be useful to develop the
term

H =BG -~ F?, (2.7.12)

e

From (2.7.10)

2 2
au 3! -E’.H- Q.v. i -a.-v. !
X[(ﬁ) B+ 2 \ 3 F’' + ( 7\) (l]

2
_louau o du dy . du av> a4, uv Ay -']
['—'M n 1+ <-- + = Y '+ = G

2 aul 81\2 5 Ou Qv 6L12 oy
He (89 (=) =) +2 7= = |z] L'F
’ o/ \OX " a¢ 99 \ON

2 2 2
VY (OW) rsr yoa BUDY (BUY
+(a¢> <ax> B'G'+ 2 I')

(&)
¢
2
du vy du v g2 ﬂ@!@l(.@.".) oG
e ae o oan T2y e \ag) MO
"
Fr)
2

hit
*(azz»)

2 2
DY prer 42 BBy (Qy) e
(a)\> F'Gh+ 2 3 96 \I G

v \
Y Gh?
(0)\) (G)

[P VT
[ERSDTPORNI U K I URIPPRY X1, 5 1\
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The determinunt

d¢ oA
f)l ay
d¢g DN

is the Jacobean determinant of the transformution from (¢, N) to (u, v),

2.8 Conditions for Equal Aren and Confurmal Projections |61, [10]

The first fundumental form and the Tundamental quantities are used to define the cone
ditlons for equal aren und contormul projections. This can be done in u generul manner. For
the conventional projections, cach cuse hus its awn requirements, and no generul relations

can be defined,
An equal area map Is one in which the areas of domains are preserved us they are trunss

formed from the carth to the map, A theorem of differentiol ggometry requires that a
mapping from the carth to the plotting surfuce Is locally equal aren if, and only it

og ~ 1T = LG = 12, (2.81)
The relation (2.8.1) is substituted into (2,7.13) to obtain the equal areu transtormation,
This Is done in Chiapter 4 to transform from the varth to the eylinder, plane and cone,

A mappiog of the surfuee of the curth onto the plane, or u developable surfuce is called
conformal (orisogonul) it it prescrves the ungle between intersecting curves on the surtuce,
From u theorem of differentiol geometey, o mapping is catled conformal i, und only if, the
first fundimmental forms of the carth and the mapping surface, in compatible coordinates,

are proportional at every point, This requives that

Lo (2.8.2)

in the symbols of the previous section,

The transtormations of Chapter S will apply these relations between the earth, and the
plane, eylinder, and cone,

2.9 Convergeney of (he Meridians | 7|

As one goes polesward from the equitor on the varth, the meridians converge, until, wt
the pole, all meridians interseet. This section will give anestimate of the degree of this con-
vergencey as a tupetion of fatitude. Both anpatar and linear convergency will be considered,

o 2 i Lo i R
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In Figure 2.9.1, ACN and BDN ure two meridians separated by a longitude difference
of A\, Let CD be an arc of the circle of latitude ¢, Let the carth be considered us spherical,

FFrom the figure,

CD = CO'AA 29.1H
= ..D_O.i. [y
N sing (29.2)

Approximately, the angle of convergency Is

0= l%?;. (2.9.3)

Substituting (2,9.1) and (2.9.2) into (2.9.3), und noting that CO' = DO’
0 = ANsing ., (2.9.4)

Let the distance between the meridians, measured along a pursllel of latitude, be d, and let
the rudius of the earth be a. From the figure

A= a cL:)s¢' (2.9.5)

Substitute (2.9.5) into (2.9.4)

dsing
) = ——
¢ Heoso

_d t::n(g' (2.9.0)

The next step is to obtain the lincar convergeney. From Figure 29,2, 1et € be the
length of the meridian between two paralicls ¢4 and ¢a. Let 0 be the mean angufar con-
vergencey at a mean latitude

V)

.‘él - (29N

¢ — ——

u} +

The mean distance, at the mean latitude, is d. Detine the linear convergeney ol the two
meridions (o be ¢ Then, as an approximation,

0= ¢/U, (2.9.8)
Substitute (2.9.0) into (2.9.8),

= 4t

- i

12.9.49)
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]
Figurs 2.9.1. Geometry for anguiar converganes of the meridians
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Figure 2.9.2. Geomatry for linear convergenoe for the meridians
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2,10 Rotation of the Coordinate System {20]

A rotution of the coordinate system cun be defined to conveniently obtuin oblique,
transverse, and equatorial projections from polar projections. This cun be conveniently done
by applying formulus of spherical trigonometry, The spherical trigonometry approach is
justified, since in Chapters 4 and 5, it will be shown that an intermediate transtormation can
be performed for the equal area and conformal projections which transforms from positions
on the earth to the uuthalic or conformal sphere, respectively, Onge this is done, the rotu-
tion formulas for the sphere can be applied directly, Also, the conventional projections of
Chapter 6 nre bused on u sphericul carth for the mujority ol their practical applications.

Figure 2.10.1 provides the busic geometry for the rotational transforimation. Let Q be
any arbitrary point with coordinates ¢ and A on the earth. Let P be the pole of the auxiliary
spherical coordinute system. In the standard ¢quatoriul coordinite system, P hus the coordi-
nates ¢, and Ay, Let hobe the latitude of Q in the auxiliury system, and «, the longitude in
that sume system, A reference merfdian is chosen for the origly of measurement of «,

The Intention i3 to derlve the projection in the (hy &) system, und then transform to the
(¢, N) system for the plotting of the coordinates,

The relations betweon the angles of interest cun be found from the spherten! telangle
PNQ.

Ifrom the luw of cosines
o8 (90° = ¢) = cos (90° — @) cos (90° = )
+5in (90° ~ ¢,) 8in (90° = 1) cos v
sihg = singy sinh + cosdy cosh cosa, (2,10.1)
From the law of sines

s (A “)\p) . sine

sin (90° =Y sin (9Q° - cbi

sin e eos h (210N
Cos ¢ B

S Ay =

Also, applying the four parts formula
cos (90° - Pp) cos = sin (V0% - ) cot (90° ~ h)

=sin o cot (M- A

Sit ey cosee = ocosdy, an s cot (A - Ny)

cosdiy tanh sind, cosa

’
Sin o (2103

COLEA = Nyt -

v,y g Cre o e v “
R .l. A
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Reference

P(%. \p)

Figurs 2,70,1, Geomatry for the rotational transformation
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The inverse relutionships ute ulso of use, From the law of cosines
¢cos (90° = h) = cos (90° ~ @) cos (90° - ¢,,)
+5in (90° ~ ¢) 8in (90° — @) cos (N =Np)
sinh = singsing, + cose cosg, cos (A—=Ap). (2,10.4)
From the four parts tormula
o8 (90° = @p) cos (A = Np) = 5in (90° = ¢p) cot (90° - )
=sin (A =) cot o
singp cos (N =2Ap) = cosd, tang ~ sin (A= Ap) cota

sin (A= Ap) coter = cosgy tund = sindp cos (A = Ap)

rotations neeessary to form oblique, tansverse, and equatoriul projections From polar and
repular projections, These will be required In some of the projections of Chapters 4, 8, und o,

Wna = sin (A= Ap) ' (2.10.5)

? Cos @y tun g — singd, cos (A = \p)

A final useful equation is needed for unique quadrant determinations From a constderation

N of Figure 2,10.1 .

b i
coseecosh = sing cosg, = cosdsing, cos (A=), (2.10.6) )

B Havlng possession of equations (2,10.4), (2.10.5), and (2.10.6), we ¢an aecomplish any
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Chapter 3 ]

)

FIGURE OF THE EARTH _ :

The busic geometricul surfuce taken as the model of the earth will be an oblute spheroid \
generated by revolving an ellipse ubout {ts semi-minor axis. This chapter will be concerned
with the geometry of the spherold, und the reduction to the sphere, 4
)

The figure of the carth, as seen by the cartographer, is fur less complex than that seen
by the geodesist ot the ustronomer. For his busic surtuce, the curtographer may assune a
single best spheroid, and project theteon positions from an unduluting earth, Then, he s |
free to begin the process of projecting onto u map. The geodesist must consider u spherold
i which {s possibly best in one portion of the world, and other spherolds which are best in
b other portions of the world, and then strain to putch them together In n coordinuted munner,
The astronomer, dealing with the dynumical figure of the carth, must consider peur-shape
and unditlntions to obtain solutions couched in tesseral hurimonies.

e b e S mimen s e

b e,

-
B The cartographer hus only to deal with the geometrical figure of the earth, and can )
a enjoy immense simplificutions. To facilitute the transtormations of Chupters 4, §, and 0, it B
J I8 necossary to conslder the geometry of the ellipse und the spheroid, The coordinate system i
o of the spherold will be introduced. Angles und distunces on the spherold wifl be considered, N
; Then, purticular constunts for the actual size and shape of the carth will be glven, :‘f
: Many of the projections {n Chapters 4, 5, and 6 will be bused on an intermediate trans i
formation to v sphere, Thus, it s necessury to Investigate the further simplifications in -
coordinutes, angles und distances on a sphete. ' '

Finally, the figure of the moon s developed, I the Space Age, maps of the moon have
been required. 1t §s fltting to give o stundurd reference spherold for the moon,

3.1 Geometry of the Eftipse [1o]. [ 17]

The ellipse Is the generating curve which produces the spheroid ol revolution, The
nomenchirure of the ellipse is best deseribed with reference to Figure 3,101,

The semi-major axis, a, s the lengtivof the line AO, or the line OB T'he semisminor
axds, bods the dength of the fine DO, or the Hue CO, The equation for the ellipse, fora
Cartesfin coordinite system with orfgin at 0, iy
Do '
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The degree of departuse from circularity is described by the eceentricity, e, or the
flattening, . The eccentric.ty, fluttening, semi-mujor axis, and semi-minor uxis are refated
us follows:

2 — h?
g2 = b2 (3.1.2)
u?
=i b
I T (3.1.3)
0 = 2~ (2, (3.1.4)

At this point we shall introduce one of the two angulur coordinates which uniquely
locate u position on the spherotd, This flrst coordinute {s the latitude. Two types of latitude
will be noted: the geodetic und the geocentric, The relation between the two will be derived,

The geocentric latitude I8 the angle between u vector from the center of the ellipse, to
4 point P, on the ellipse, and the seml-major axis. The geodetic Intitude is the ungle between
o line through the given point, normal to the ellipse, and the semismajor uxis. This nor-
mal to the ellipse is the line defined by o surveyor's plumb line it all gravity unomalies
ure (gnored,

Now, consider u polur coordinute system with the ovigin at 0. The geocentrie latitudy,
@', 1s 2COP, und the mugnitude of the vector is r. The relation between the Curtestun und
the polar coordinates is

ucosg 315

i}

X

[

7 = bsing'. (3.1.0)

Laguations (3.1.8) and (3,1.60) can be combined to form

—

2 tang' . (317 B

T

7
X

Substitute (3.1.2) into (3. 1.7, g

.‘é'. - \/--lA—-:—-c- l'.”\ d)l . (.‘.l.H)

OF greater interest is the geodetic latitude, ¢, This angle, 2 PQW, defines the inclination
ol Hne QP, which is normal to the ellipse at point P,

N
. S L KRR
tan ¢ 0 (310

TRRFAT YA W00 WAy 8 qepp pan g bmpe
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Taking the differentinl of (3.1.1)

&xdx . 2z2dz
@t 0

T e A s it TR

TE=-5 e (3.1.10)
u Substitute (3.1.10) into (3.1.9),
i

2
tang = L Z

3 (3.0.11)

Substitute (3.1.7) into (3.1.11).

b

tun ¢ = -%—i 7 tan ¢’

tun @' = -}% tang . (3.1.12)

Substitute (3.1.2) into (3.1.12).
tang’ = /T = ¢ tang, (A1.13)

Table 3.1.1 gives the relation between geocentrie latitude and geodetie latitude for the
WGS-72 spheroid, which will be discussed in Section 3.4,

The convention tor measuring geodetic latitude is +¢ in the northern hemlisphere, und i
=@ in the southern hemisphere,

et ek b e e s B O ‘ . j
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Table 3.1.1. Geocentrio and Geodetic Latitude for
the WGS.72 Spherold (Dagrees).

Geodetic Geocentrle Geooentric  Geodstic
¢ ¢ ¢ ¢
0.00 0.0000 0.00 0.0000 |
600 4,0833 5.00 B.0187
10,00 9.8972 10.00 10,0330
186,00 14,0820 18.00 16,0482
20.00 19.0383 20,00 20,0819
28,00 24,9264 2B.00 26,0738
30.00 20,0168 30.00 30.0834
36.00 34,9087 36.00 36,0808
40.00 30,8083 40,00 40,0948
45.00 44,0038 46.00 45,0802
60.00 49,9063 60.00 50.0847
56.00 54,8008 56.00 $6.0004
80.00 58.0187 60.00 60.0833
3856.00 64,9263 66.00 686.0737
70.00 69,9381 70.00 70.0618
76,00 74,9619 76.00 76.0481
80.00 79,8674 80,00 80.0329
86.00 84,9833 86.00 86.0187 I

00.0C £0.0000 80.00 80.0000




F
|4

6Y
1.2 Geometry of the Spheroid {23
The spherold, which is tuken us the model of the earth, is obtained by revolving the

ellipse of Figure 3.1.1 about the z-uxis. For the Carteslan coordinate system shown in
Figure 3.2.1, the equation of the spheroidal surfuce is

x2 ¥
sridory gl 1 (3.2.1

The nomencluture of the spherold can be obtained by studying Figure 3.2.1, Each of
the Infinity of positions of the ellipse us it is rotuted about the z-nxis defines o meridianal
ellipse, or meridian, The angle A, measured in the x-y plane, and from the x-oxis, {s the
longitude of any und all points on the merddianal ellipse, This Is the second of the two
angular coordinates which uniquely define u position on the spheroid. As a cotiventlon, a
rotation from +x to +y will be positive, und the reverse rotation, negative,

Consider the point P in flgure 3,21 to be defined by ¢ and A, Suppose now that \ is
allowed to vary, while ¢ is held constant, The locus on the spheroiu truced out by Pisa
clrele of porulle! of rudius R, The circle of parallel for a latitude of zero is the equator,

It remuins to derve the equutions for several radif of Importance In futuse develop-
ments, These ure the two prineiple radil of curvature, and the radius of w parallel eirele, ull
us 4 tunction of latitude,

Consider the merddianal ellipse ot any wbdlteney X From (3.2.1)

R \
— b
L= (3.2.2)

where Ry = /X7 4 y2 is the radius of o paraliel cirele,

Substitute (3. 1. ) into (3.2, e en

R .2
a3l =-ed)

RICU=ed) + 22 = d(l —edy, (3.2.3)
Tuke the ditferentiaf of (3.2, to obtain the stope of the tangent at 12,
2R, ARy = ety + 22d2 = 0

. |_<_1_|

Ll (] -l (3.2.4)
l'Rn ‘ ‘l es )
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Figure 3.2,1, Geometry of the spheroid
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The slope of the normal at P is ugain

dRy .
3 = R el = tun
-; @ T Rti—eny MY !
‘ ¢ = Rog(l=e)tang . (3.2.5) \ﬁ
: From Figure 3.2,1 4

"‘ sing = ——F

¢ (1 —e2)3P
2= QP(l ~c2)sing . (3.2.0)
Substitute (3.2.5) into (3.2.3) %

R2(1=e2) + RA(I=e2)? tun? g = a2(] —e?) ;
R + RE(I =P tunlg = u? ﬁ
i
iy
(cos?¢ +sln2 )R — ¢2R2sin?¢p = u? cos? ¢ PE
i
K
R3C(1 -2 5in2¢) = a? cos2 ¢ t
Ry = ——oi® (3.2.7) ;
V1 - elsinlg K
Also, from Figure 3.2.1
Ry = QR cos g . (3.2.8) ;
Fquating (3.2.7) and (3.2.8)
i
(.:).pcmw . Heos P __
m|13q‘:
) )
Qp = .

e
VA o smrtf)

QF is the radius of curvature of the spheroid in the plane perpendicular t the meridianal
plane, and will be denoted as Ry,




R, = — (3.2.9)
P V1 - elsinle

The radius of curvature of the meridianal ellipse follows from the formuls for a plane
curve (2.1.35),

4302
)
Ry = - : (3.2,10)
dR?
From (3.2.4)
%=--}(l—e2) +%—’ (‘1—c2);‘11'l%- (321D

Substituting (3.2.4) into (3.2,10)

Since the slope of the normal is tan ¢, that of the tangent —cot ¢.

de. :
LT 3213
R, Coto. { 13)

Substituting (3.2.13) into (3.2.12)

dr L+ eotig - ?
(lR” - /

)
Sine ¢
T e me————— 10
7 (3004




T T T SR T S A s

|

From (3.2.6) and (3.2.9) (
Iy

- \2 i ',I"‘

- a(l ~c4)sing . (3.2.15) :

Substitute (3.2.13), (3.2.14), and (3.2.15) into (3.2.10). 1
ks

[

( cos? ¢>3/2 j

| + ——— d

sin2 ¢ i

;

Ry, =
" _( L .2) V1= e? sin? ¢

sin? ¢ W(l=ced)sing

AT

<c052¢ + §in? ¢>3/2
sin2¢’

Ty

]

_(l ~ o2 §in? ¢) V1= etsin?e i
sz / a(l=-e?)sing |
)
1
sind ¢
Ry =]~ /2 ;ﬁ
(1 - ¢dgin? ¢:> ) 1 i
sind ¢ all - ¢?) :
TR ‘
S| | (3.2.16)
(1 =2 sin2 ¢)*/2

Equations (3.2.7), (3.2.9), und (3.2.16) give the radius of the clrele of parallel, the
radius of curvature normal to the meridian, and the radius of curvature In the meridianal
plane, respectively. The radli of curvature are tabuluted in Table 3.2.1 as functions of latitude
for the WGS-72 spheroid (Section 3.5),

Before turning to distances on the spheroid, it will be useful to relate the Cartestan
coordinates for the sphetoid to the polar coordinates,

X == Rp \‘()S‘b SOS A 1
y 7 Ry cosgsina

(3217
(1= e2)R, sind)J

it

7

B O ey SO AT ,Aj
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Table 3.2.1. Radii a1 a Funation of Latitude.

Radii of Curvaturs

Geodetic
Lutitude
¢l' R;“ R nmn
0.00 6378186, 6336477,
6.00 6378327, 6336060,
10,00 6378800, 6337306
16.00 6379686, 6338740
20.00 8380663, 6342024,
25,00 gas1eal. 6346864,
30.00 8383508, 6361411,
36.00 8385199, 6366480,
49,00 8387002 6381847,
45,00 6388884, 6387412,
60.00 6309727, 6372085,
56.00 63925636, 6378386,
60.00 6304234, 6383481,
66.00 8395770,  £388082.
70,00 G397086.  63920B8. :
76.00 8398173, 6396287 !
80,00 6398067 6307867
85.00 §3004B3. 6399126, i
80,00 830817, 6398617 ,}
;
*Degroay “{
**Matars b
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The first tundamental form of the spheroid (Section 2.3) becomes
(d)? = R (d$)” + RZ cos? g(dN)? . (3.2.18)

Equation (3.2,18) will be useful in the transformations from the spherold to the sphere In
Chapters 4 and §, and In the discussion of distortions in Chapter 7,

3.3 Distances and Angles on the Spheroid |5}

Three types of distances measured on the spheroid will be considered, These are dise
tances olong a cirele of parallel, along the meridianal ellipse, and between two ordinaty
points. :

We can deul with the distance along a clrele of purallel very eusily, From (3.2.7)

d = M (3.3'1)

| Vi el §ind ¢

where AN Is the angulur separation of two points on the cirele of parullel, in radiuns. Table
3.3.1 glves the distunce for an angular separution of 1 as o function of latitude for the
WGS-72 ellipsold.

Distance along the meridiang) ellipse reguires an integeation of (3.2.16). To facilitute
this, (3.2.16) is.expunded by the binomial theorem.

Ry = a1 =e?) (1 + 3 vy + I etainte 4 33 4o gins ¢ + ) (3.3.2)

Equation (3.3.2) is a rapidly converging series, us we shall see when we display the values of
¢ in Section 3.4,
The distunce between positions at latitude ¢y and ¢3 on the some meridianal ellipse are
b
d = f Run cl (3.3.3)
9
Substitute (3.3.2) intd (3.3.3) and integrate

. ¢32
df-‘-u(l-u‘)f (l +
(]

ro)

e2ain2¢ I-SS o4 sind g+ -?% chginh g + > e
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Toble 3.3.1. Ditances Along
the Clrcls of Parallol for &

]
Separation of 1. i
Geodatio -
Latitude Distance .
¢l‘ d** "
0.00 18£5,332
5,00 1848319
10.00 ° 1827,32¢ :
16.00 1792.618 ‘
20.00 1744,124 !
26,00 1682.507 .
30,00 1608.110 X
38 00 1621474 y
40,00 1423,236 :
45,00 1314.118
50.00 1194,033
56.00 1068.672
6n.00 $30,002
66.00 788,260
70.00 $636.443
76.00 | 481.701
80.00 323.226
86,00 162.241
90.00 -, 001
*Degroas
**Moters

3
!
i




6 0

3 45 528
—) AR B e Y LI
a(l L){¢(l+4u "641.. + Fem
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—% 00 sind g cos¢g + }

3 45 45 515
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» - ¢l
- %9- b (gln__:._@) (3 -4 cos 29 + cos d¢)

6 16 o

Further expand the last term in (3.3.4)

sin 2
__.8_% b (on;_nqb_> (3=4d cos 20 + cos4p)

..%% @b (-13(7 sin2¢ - -%-sin 20 cos g+ 'l'la sin 2¢ cos 4(/;)

= -%g b (ia() sin 2 % sindg - 312- sin 2 + -5]5 sin (uj»).

Substitute (3.3.5) into (3.3.4).

sl e e
,[%p: + :}%d +(~3;4 + 3—: (I—% - le))c“ + J\III:
+[,—§5(- o4+ ('TE)SF M%--;—)c" + ]sin‘kb
~%—; ' % §in6g + ...}‘M
P

b SN il i)

.-.,\mm.nw,.w;\ﬂumlmiwm i\ el v i ik

(3.3.4)

(KIKR)
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3 5
d=ﬂ{(l—g"-“zi—4-c4—-me6- )'b i
..(%92+3%e4+1-i%ae5+‘”>smz¢
7]
+(§l§% et o+ 1'%‘2-' o + ) sindg — ——383., eb sin 6¢ + } (3.3.6)
i - 61

tquation (3.3.6) has been evoluated in Table 3.3.2 for 1" intervals of arc nlong the
metidiunal ellipse us a function of lntitude for the WGS-72 spheroid,

The distance along a spheroid between two arbitrury points Py (¢, ) und Pa(ea, A2)
is obtained from consideration of the first fundumental form for a spheroid (3.2,18),

b2 '/
s mf [R,’,, + R cost (%)] dé . (3.3.7)
()

To obtain the shortest line on the spherold connecting Py und Py, that s, the geodesic curve,
apply the Euler-Lagrange relations to (3.3.7), where

L@ AN) = RE + R2 cos?g(N)?

dg \aN) " B
D% = kLo = ¢ (3.3.8)

where ¢ s ¢ constunt.,

Substitute (3.3.8) into (3.3.7.

\¢] , L"‘ l/:
s = [ RS + ————-—-) 4 . (3.3.9)
o, ( "R cos2p

It remudng to evaluate ¢ In (3.3.9) Integrate (3.3,

ih
Ao I;.‘_._z_;; + k. (RIRRE)
R i" CON

Substitute (3.2.9) into (33,100,
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3
.
1
i Table 3.3.2, Distance Along .-
3 the Meridianal Eilipse for’ \
E « Separation of 1, : ‘
E Guodetic
4 Latituds Distance
(] (X))
» ¢ )
0.00 1842.914
.00 1843,085
10.00 1843.472
16.00 1844.154
20.00 1846081
28.00 1846,224
30.00 1847.648
38.00 1849.018
40.00 1850.686
48.00 1882.204
60.00 1863.826
$6.00 18565.399
60.00 1866,878
86.00 1858,218
70.00 1869,373
76.00 1860.312 |
80.00 1861.006 1
86.00 1861.420 E
20.00 18681.672 i}
;..
*Degress a
**Meters i

O 8 Sl INer
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1 - 2 sin’q‘;)
A= (=2 g+ k
Lf( a? cost e ¢
| -~ e’(l-cos’d&)]
= ¢ ¢ + k
Lf[ a? ¢os? g e

| - g2 02)
el Bl N B
Lf( u? cos?¢  u? ue

-
-l o2

= ¢ (L—-L> tung + &—EJ + K. (3.3.11)
al u?

Evaluate (3.3.11) ut Py and Pg, and subtract to eliminute k.

- 12
A= [(L____g_l) tun ¢ + & ¢)] + K
ul ad

el \2 \2
A = o¢ [(L—-L-> tungy + "L'; d’z] +k
A

| - 2 o2
A =N = | (=) (landy ~tungy) + T;- (2 —¢y)
e ue
.= MM . (33.10)
| - o2 o2 _
) (tandy ~tungy) + 25 (da —dy)
ik al

Substitute (3.3.9, (3.2 163 and (1.3 1) into (3.3.9),

f'm i) —ed) ' (l - o2 slnhb)
N =
b (=l sint ) ad cos? ¢

W

172
N A1 = A2 "
(A L/
¥
| - \.2 . Y L‘:
=) (tanéy - tan ) "—l, (pa ¢y)
e e
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=4 f‘“ {__0.__..)__
/) (1 =e? sin? ¢)?

N (A2 =A)2(1 = ¢? sin2 ) }'“ "
[(1-e2)(tangy ~tang;) = e2(d2 —¢)) ? cos? ¢ '

(3.3.13)

Fuced with a horrid equation such as (3.3.13), the only reasonable procedure is a nue
merical Intepration on u computer for u specitic choice of starting and ending points, The
equation itself is completely general,

Several features of the geodesic will be noted. In general, the geodusic is not o plane
curve, However, the plune which contains any three near points on It also contains the
normal to the spheroid at the center point of the three, The meridianal ellipse is one partic-
ulat geodosle, and is obtalned by setting dA/de = 0in (3.3.7), The equator is ulso u purticular
geodesic. The meridiuns and the equator are the only geodesics which ure plune curves,

Another feature, I8 that along uny geodesic, R, cos @ sina Is constant, where o {s the
azimuth,

Three differentiol formulus will be derived which apply at any point on the geodesie,
and relute @, A, a, and 8, where o is the azhmuth,

QQ . Loy

ds ~ Ry (3.3.14)
dA Ll sine

i‘ﬁ = E‘; tan ¢ sina . (A310)

Equations (3.3.14) und (3.3.15) cun be obtained from u consideration of the angle be-
twoeen acurve on the spheroidal surtace, and one of the parumetric curves, the merldlunal
ellipse, where N (s a constant,

From the fhrst tundamental form for the spheroid,

IF = R} (3.3.17)
G o= Rf, coNd g (1L318)
F=0, (3319
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Figure 3.3.1. The azimuth of a curve’
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‘ Since A| =¢

‘\ d =0 (3.3.20)
\ and

ds, = E d¢y (3.3.21)
cosq = E d¢ d¢lds-:ls]G dadh (3.3.22)

Substitute (3.3.20) and (3.3.21) into (3.3.22).

_E & d
cosax = d¢1

VE ds
- VE

o
=&

(3.3.23)

A}

Substitute (3.3.17) into (3.3.23),

cosa = R, %%

This has justified (3.3.14).

sina = /EG (

d¢| d7\—d¢d>\1>_ (3.3.24)

ds ds,

Substitute (3.3.20) and (3.3.21) into (3.3.24).

C/EG dgy K
MR ETTE dey ds

= /T % (3.3.25) i
Substitute (3.3.18) into (3.3.25). i
sina = R, cos¢ %% %(
This is (3.3.15). ‘
From (3.3.14) and (3.3.13), the azimuth at P ot the initlation of the geodesic can be
caleulated. :
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d¢

cosay = Ry s

- (1 —c2)?
(Rm)l { (1 - ¢? sin? ¢1)3

12

- 201 =@l 2

. M2 =Nl -e jin $1) . (3.3.20)
[c1 _el)(tﬂn¢z ~tang)) = e (¢, -¢l)]2 0082¢l

The rhumbline (or loxodrome) is a curve on the spherold which meets each consecutive
meridian at the same azimuth, From Figure 3.3.2,

- dA
tano = R ds cos ¢

Rp .
d\ = tuna m do . (3.3.27)
Substitute (3,2.9) und (3.2.16) into (3.3.17),
aN = tine — e
\/T - clsinig

a(l —e?)cosg
(1 —e2 5in2 ¢)3/2

[1 - ezsin?ct]
= N o | m——
(1 =ed)coso

AX

e/2
fr @ l-csind)) ] _ ,
tan o [t.m <4 + 2><_——l Tosne . (3.3.28)

The kernal of (3.3.18) will be seen ugain when we treat the contormal projections of Chap-
ter 5. The rhumbline, used in conjunction with the Mercator projection (Chapter §) and the
greut circle on the gnomonic projection (Chapter 6) ure longstanding aids to nwrine and
aerial navigution,

S st

|

s il
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Figure 3.3.2, Differsntial slement dafining 4
a thumbline on a sphevoid
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3.4 Geodetic Spheroids [5),17),118], [21]

Beginning in the carly 1800, a serious attempt was made to find the correct dimen-
sions of the earth, Geodesists und surveyors undertook to find the best representation,

The physical shupe of the eurth is too Irregular to be used in any mathematical study.
Thus, it was necessury to define a fictitious surface which approximates the total shape of
the earth, The surfaces of revolution of this section are the geodesists answer to the problem.
They ure the most convenient surfuces which bast fit the true figure of the earth.

The geodesist’s first approximation to the shape of the earth is the equipotential surfuce
at mean sea level called the geoid. The geold is smooth and continuous, and extends under
the continents at the contlnued moun sea level, By definition, the perpendicular at any
point of the geoid is in the direction of the gravity vector. This surface, however, is not
symmetrical about the uxls of revolution, since the distribution of mutier within the earth
is not uniform. The geold [s the intermediute projection surfuce between the frregulur earth,
and the mathemuticully manageable surfuce of revolution,

The estimutes of the values of the semi-mujor axis und the tlattening have changed over
the lust 145 yoars, Progress hus meant better Instruments, better methods of thelr use, und
better methods of choosing the best fit between the genid and the spherold, The instru-
ments, their use, and the statistical methods of reducing und fitting the duta are beyond the
scope of this report. Nevertheless, we must be awure 3)1‘ thelr existence, und their conteibu-
tion to mupping.

Table 3.4.1 gives the numes and dates of Important reference spheroids, as well us the
equutorinl seml-tmujor axis, a, und the Nattening, f, of the ellipse, Historically, the tirst of
these spherolds, the Everest through the Clarke 1880, werc intended to it locul areas of the
world.” Beginning with the Hayford spherold, an attempt wus made to obtain an intet-
nationully ucceptuble representution of the entire world,

Progress has continued In refining the values of the semi-major uxis and the fluttening,
The best representations avaituble today are the World Gravity System of 1972 (W(GS-72)
and the Internationul Union of Geodesy and Geophysies of 1975 (LU.G.G.) valaes, The
WGS-72 vutues will be used in this report.

Unfortunately interest in generating tubles such us Tauble 3.2.1, 3.3.1, 3.3.2, und 4. 1.1,
and the plotting tables of the projections has flugged since those similur tubles incorporating
the Clarte 1880 and Huyford spherolds were published [25]. Thus, the tables included in
thiz repuct, using the WGS-72 spheroid, are the most recent representations of cartogrphic
data uvailuble,

Consider now the WGS72 spherold. Using (3.1.4), the cccentricity of the merldiunal
¢llipse 18 0.081819, From (3.1.2)

he = 42(1 -0y, (3.4.1)

Using WGS-72 purameters, b= 06356750 meters, Thus, the difference in length between tie
vquatorial and polar nxes is 21385 meters,




Table 3.4.1. Reference Spheroids.

Reference
Spheroid

EVEREST
BESSEL
AIRY
CLARKE
CLARKE
CLARKE
HAYFORD
KRASOVSKY
HOUGH
FISCHER
KAULA
.U.G.G,
FISCHER
WGas-72
1,U.G.G.

Date

1830
1841
1868
1868
1868
1880
1910
1038
1966
1860
1861
1067
1968
1972
1976

88

a
{metars)

8377304
6377307
8377663
6378204
8378208
6378240

~ 8378388
6378248
8378270
8378166
8378166
8378160
8378160
8378136
8378140

f

1/300.8
1/209.2
1/289,33
1/204.3
1/286
1/203.8
1/282.0
1/298.3
1/297.0
1/208.3
1/282.3
1/298.26
1/202.3
1/298.26
1/298.267
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The cecentricity figures in the series expunsions developed in this chapter, [t has been
noted that these expansions ure rapidily convergent, due to the small value of ¢, This is now
demonstrated by Tuble 3.4.2. In the table are powers of e for the WGS-72 spheroid, Note
that consldering the seven significant flgutes for a, it is not necessary to carry uny expansion
beyond ¢5,

Table 3.4.2. Powers of o for the W38.72 Spherold.

n a" n "

1 0.081819 4 0.00004481
2 0.00889436 5 0.000003867
3 0.00084772 6 0.000000300
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3.5 Reduction of the Formulus to the Sphere |22]

The most simplitied model of the eurth s the sphere, In the spherical case, the gen-
erating curve for the surface 13 the cirele, which is an ellipse of zero eccentricity. - The semi-
major axls and semi-minor axis ure the sume, This offers immediate simplifications or the
problems of distunce, and angular measure. The spheroidal formulas, in gen. - ), can be re
duced to the spherical by substitution of e =0, However, the formulas for distunce between
arbitrury points, and azimuth can best be approuched by spherical trigonometry,

The equation for the sphere in Cartestun cootdinates is

H= o= ] (3.5.D

Figure 3,51 gives the geometry of the spherival earth. Note that the normal to the sphere
at a point, Pucoineides with the geocentrice rudius vector,

For the sphere, there I8 only one type of latitude, shnce geocentric und geodetic latitudes
coinclde, Longitude is mensured in the sume way it was for the spheroidal case, The sign
conventions far latitude and longitude in the spheroidal cuse also holds for the spherlcal case,

The radius of u clrele of parallel becomes, by substituting e = 0 into (3.2.7)

R = acosg, (3.5.2)
By the sume substitution, the radil of curvature (3.2.9) and (3.2.16) are found to be
Ry = Ry = u. 3.5

The relation between Cartesian und polar coordinates follow from (3.2.17).

X = oS¢ cos A
y = aeosdsink (3.5.4)
= using J. '

The (st tundamentat form is, rom (3.2.18)
(d)? = a2(dg)? + a2 cos? ()2, (3.5.5)
Distance along the clrele of paraliel is, from (31.3.1)
d = nAhcosp, (3.5.00)
From (3.3.6), distance ulong the merddian eleele is simply

d o= wled (3.57

e,
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Marldian
circle

Parallal
circle
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Figure 3,6.1. Geomatty of the iphere .
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On the sphere, the shortest curve connecting two arbitrary points is an arc of the great
circle, The great cirele (also called the orthodrome) corresponds to the geodesic curve on
the spheroid, but with many simplifications. The great circle is a planar curve which con-
tains the two urbitrary points, und the center of the sphere, The distance on the surfuce of
the sphere, can be obtained from consideration of Figure 3.5,2.

The equations of spherical trigonometry will be used to derlve the distance, d. Con-
sider the law of cosines,

cos 0 = cos (90° = ¢,) cos (90° ~ ¢7)
+3sin (90° = ¢1) sin (90° ~ ¢3) cos AN
= sing sin ¢,
+c‘o§¢1 cos ¢ cos AN . (3.5.8)
Tuking the urc-cosine of (3.5.8)
d = ucos~t [sing) sindy + cosoy cosdy cos AN] . (3.5.9)
The nzimuth, &, of point Py from Py is ulso obtuined from the spherical triangle NP,
Pa. Taking the are-cosine of (3.5.9) again, the angle 8 is now available, Then, the law of

sines is applied.

sth ot = SinAA
§in (90° —¢y)  sin0

cos oy sin AN

sina = 0 (3.5.10
Also,
cos@ = ¢os 0 cos (90° =) + sin 0 sin (90° = @) cos (90° - ¢2)
cosee = cosdsing; + sind cosgy sings . (351D

From (3.5.10) and (3.5.11), the quadrant of the azimuth can be seen, As was men-
tloned in Chapter 1, azhmuth is measured from the North, positive to the East, and negative
to the West,

The rhumbline or loxodrome {8 obtained from (3,3, 28) by substituting in (3.5.3)

A\ = tunu[ In ton <77{- + 2}) = In tin (-I— + 2})] (35.12)

Equation (L.5.12) van be investigated, 1£¢y = ¢y, then tan o= 0, 0= 90, This is an azimuth
along n parallet circle. 1N =Xy, tupee =0, 0= 0, yielding a meridian,
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Figure 3.5.2. Distance between srbitrary points on the sphere
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The distance along the rhumbline is found from Figure 3.5.3.

§ = g = ——
P, Py cosu

= R (B2 01). (3.5.13)

As was mentioned before, the great circle and loxodrome will be mentioned again in
conjunction with the Mercator and gnomonic projections,

P1“

Figure 3.5.3. Differential slernent defining a rthumbline on a sphere
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3.6 Figure of the Moon | 4]

With the Space Age, the moon has become a practicul entity. Beginning with the U.S.
Air Force Mosaic in 1960, engineers and scientists have mapped the moon, the first attempt
being an Orthographic projection (Chapter 6).

The moon itself is clearly a trinxial ellipsoid, not u spheroid of revolution, Table
3.6.1() gives the semi-axes of the triaxinl moon,

However, for mapping convention, the moon is considered to be a spheroid of revolu-
tion. The constants of the generating ellipse are given in the Table 3.6.1(b), .

Once this simplification Is made, all the formulus for the terrestrial spheroid apply ime
mediately, Then, the methods of projection to be developed In Chapters 4, S, and 6 can ‘
be used.

These sume techniques also apply to mapping other planets, No doubt, the Viking
pletures of July 1976 will be analyzed and reduced to provide 4 new map of Mats using one 3
of the projections now to be considered. A

Tablo 3.6.7, Lunar Spheroid -
{a\ Actual
a* b* c*
1738670 1738210 1737480

{b) Conventional
u* f
1738380 1/1031.6

*Muters




Chapter 4 ¥ ol
EQUAL AREA PROJECTIONS

The requirement which underlies all the projections in this chapter is stated as follows:
Every section of the resulting map must bear o constant ratio to the area of tlie earth repre-
sented by it. This requirement will be stated in mathematical terms, Thus, all of the projec-
tions of this chapter are fuunded on some algorithm which maintains the equivalency of area,

As in any endeuvor, there is u hard way and an easy way to work. The cartographers
of days pust attempted to trunsform from the spheroid directly to the developable surface.
The ensler, and more modern approach, Is to transform from the spheroid to the equivalent
aren sphere, and then transtorm from the sphere to the developable surface. This results in
equations which are far less cumbersome, This chapter follows the modern approach.

First, a transtormation Is derived which defines an authalic sphere. This authalic sphere
has the same total arca as the spheroid. The longitude of points Is undisturbed by the truns-
formation. However, the transformation requires the definition of an wuthalie lutitude on
the sphere, which corresponds to the geodetic latitude on the spherold, Also, the radius of
the authalic sphere must be determined,

Second, positions transtformed to the authalic sphere are then transformed onto selected
developable surfaces to form a mup.

The projections to be discussed are the Azimuthul, Conical, and Cylindrical Equal Area,™

the Bonne, the Werner, and a selection of world maps: the Sinusoidal, Mollweide, Parabolic,
Eumorphic, Eckart, and Hammer-Aitoft, In addition, a simple means to minimize extreme
distortion is udvanced in the Interrupted projections,

A quantitative over-view of the theory of distortions is put off until Chapter 7, where
this theory will he applicd to the most usctul of the projections en masse. Plotting tables
for selected projections are given, The computer program which generated the tables is
Appendix AL,

4.1 Authalic Latitude 2], |81, |20]

Authalic latitude is defined by the equal area projection of the spheroid onto a sphere.

From the fundamental transtormation muatrix of Chapter 2, and the condition of

equivalency of area:

Y6
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In (4.1.1), o5 and A5 are the authalic latitude and longitude, respectively, on the authalic
sphere, und ¢ and A are the geodetic latitude and longitude, respectively, on the spherold.
Ry is the radius of the authalic sphere.

Both the systems are orthogonal, so

f=F=0, 4.1.2)
On the spheroid from (2.3.15):

ds2 = RE dg? + R3 cos?¢ N

e = R}
(4.1.3)
g = R cos?g
On the avthalie sphere from (2.3,14):
ds2. = R} dod + R} cos?en AN
E = R}
(4.1.4)
G = R} cos? gy
Substitute (4.1.2), (4.1.3), and (4.1.4) into (4.1.1),
2
% O\
RZLR2 cos2¢ = R} cos? iy : (4.1.5)
My
o oA

i, el L6
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The longitude is invariant under the transformation: A =\a. Thus,

LYY

TN 1 4.1.6)
oA

oA o

) 0. “4.1.MN

The authalic latitude is independent of A, .

LT
N 0. (4.1.8)
Substitute (4.1.6), (4,1.7), and (4.1.8) into (4.1.5)
2
0y
3¢
R% R2 cos?¢ = R} cos? g,
0 1
R% R2 cosi¢ = R} cosga (%) . 4.1.9)

Equation (4.1.9) can now be converted into an ordinary differentinl equation,

RmRp cosd dd = R} cosgp doa . (4.1.10)

Apply the values of Ry and'Ry derived in Chapter 2,

' w2l
Ry = ul - e*) (2.2.10)
(1 ~e2sin2¢)*? !
R, = 8 (2.2.17 i
P (1 -e2sin2g)l/? g
Substitute (2.2,16) und (2.2.17) into (4.1.10), ! L
p2(1=¢?)
—_———— cosp dp = R} cos Pp dp . (4.1.11)
(1 —e2sin2¢)? A A oA
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Integrate (4.1.11)
b
R} =f cosga dpa = R} sing, '

i

¢ 208 ¢
=u2(|--e2)f ULy 4.1.12

o (1 =¢2sin2¢)? a4 ( )

The easlest way to attuck (4.1.12) is by means of a binomia! expanslon:

¢
R3 singa = a2(1 ~¢d) f cos (1 +2e2sin2¢ + 3¢ sind ¢ +4cbsinbg +,..) dg
0

= 32(1 =e2) sing +-§-e2 sind¢ + % ot sinS ¢ + ;-e“sin"gta .o
4.1.13)

In order to determine Ry, we introduce the condition that o = n/2 when ¢ = /2,
Then, (4.1.13) becomes

R} = u’(l-e’)(l I TLRE FURE-FLE ) (4.1.14)

Equation (4.1.14) glves the radius of the authalic sphere with an area equivalent to that of
the spheroid.

Substitute (4.1,14) into (4.1.13) to obitain the relation between authalic latitude and
geodetle latitude,

o
1 + i-czsin?qb +-‘:—e4 sind ¢ +%-c°sin"¢ o,
sings = sing - - 4L

I+%u2 +%—u“ +%—u"+...

As wus seen in Chapter 3, the eccentrieity, ¢, Is o small number for all of the secepted
spherolds. Thus, (4.1.15) contains rapidly converging series, The relution between authalic
and geodetic latitudes is tubulated in Table 4.1.1 for the WGS-72 Reference Elipsokd, in
increments of 5°,

Now that the transformution from the spheroid to the sphere is completed, the trans.
formutions from the sphere to the developuble surfaces will be derived. In these detivations,
the subscript A on the latitude, longitude, and rdius of the authuhie sphere will be dropped.
and ¢, A, and R will be the latitude, longitude, and radius, respectively, of the nuthalic
sphere,

T

eI

-

.




100

Table 4.1.1, Authalic and

Geodetic Latitudes.
Geodatic Authalic
Latituce Latitude
{Dagrees) {Degress)
0,00000 0.00000
500000 497770

10,00000 9.9%608
1%.00000 14493577
20,00000 19,91741
25.000080 24.90153
30.00000 29,88863
38,00000 34.87909
4000000 39.87320
45.,00000 LbsB7414
§0.00000 49, 87298
§5,00000 B4.87867
60.00000 $59.88802
65.00000 64490077
70.00000 6£9.91651
75.00000 Tue3477
40.00000 79.95500
45.,00000 84497657
90.,00000 89,99874

Radius of the authalic aphera =
6,371,037 meters

S T i
i R I SR LN W
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4,2 Conleal Projectlons |21, 1207, 122]

Two conical equal aren projections will be considered. In the first, o cone is tangent to
the authalle sphere ut a single purnllel of latitude. In the second, o cone is secant to u spher,
cutting It at two parallels of lutitude, In both cuses, the axls of the cone colneldes with an
extension of the polur uxis of the spliere, As will be seen In the following purugraphs, the
putallels at the points of tangeacy or secutiey will be the only true fength fines on the map.

Two methods of approach will be given for each of the projections,

The first is the differentiol geometry approuch, The line element on the authalie
sphere 15

ds? = R2 (g2 + R2 cos? ¢ (N2

R?

¢

. (4.2, 1)

g = R2eost o

For the polar coordinate system i a plune:

dsd = (p? + p2 02

L=
‘ (4.2.D)
() = p2
Both of the systems are orthogonal, so
F=4t=20. (4.2.3)

The origin of the projection his coordinates (da, Ap), Ag being some longitade on the
parallel of tangeney, Coordinate Ay defines the centeal merldian of the map,

Tmpose the conditions that

]

p = plp) (4.2.4)

0

i

SN+ oo (4.2.5)

The constunt ¢ 8 2ero, 1o fuether condition s that A =0, when 0 =0,

I
t
|

R

—
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; The condition of equivalency of urea is:
3p Bl
v 9 %
k E F|]dp O\
g eg ~ 2 = 4.2.6)
F Gl|ag 26
3 0¢ O\
] From (4.2.4)
“ 8o ,
T 0. (4._..7‘)
F'rom (4.2.5) ‘
-a-e- ™ 9
36 0 (4.2.8)
20 - (4.2.9)
Substitute (4.2.1), (4.2,2), (4.2,3), (4.2.7), (4.2.8), und (4.2.9 Into (4.2.6),
o
)
R4 contg = p?
0 9
5 .
R? cosp = —pey (a—p) (4.2.10) i
[
The minug sign I8 chosen since an increase in @ corresponds to a decrease in p, 'i
Convert (4.2.10) into un ordinary difterentin! equation, and integrate. i
2 |
pdp = ~ %— cos o do 'T
!
2
pt = _23%_, sing + ¢y. 4.1

In (4.2, 1), ¢y will become the constamt of the cone, as is shown below, and ¢3 will depend
on the boundary conditions imposed,

Aer nir b et st mbn sy ke
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The plane Cartesiun coordinates of the map ure given by:
X = psind
y = py = pcosl, (4.2.12)

This development will how be upplied to the Conicul Equal Aren projection with one
stundard purallel, which is ulso colled Albers’ projection, From Chapter 1,

po = Rceotey (4.2.13)
0 = \sindq . (4.2.14)

Comparing (4.2.5) und (4,2, 14),
¢ =singg. 4.2.1%8

The constant ¢ ls,'thc constant of the cone (of Chapter 1), Substitute (4,2,15) Into (4.2.11),

p? = =3R? ;‘,‘%‘7’% . (42.16)

Livaluate (4‘2.16) ut @y,
pf = ~2R? 4 o
¢y = p} + 2R2, (4217
Substitute (4.2.13) into (4.2.17).
¢y = R2cotlgy + 2R?
= R(2+ cot2 ), (4.2.18)

Substitute (4.2,18) into (4.2.16).

1 = R2
p? = R (3 + cot2¢y = 2 s:t:\lﬁu)

R2(2 sin? g . coslég s sin @ sin @y
sin? gy sinl ¢y §in? o0
R2

w = (] 4802 g — 2sin¢ sin
e 4y sin¢ singy)
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= ;",','1%,(; V14 sindgg = 2sing singg . (4.2.19)

p

The Cartestan plotting equutions have been derived. From (4.2,12), (4.2.13), and
(4.2, 14), and including (4.2.19) ~

X = S[p sin (A singg))
y = S[R eotgg = p cos (A sindg)] (4.2.20)

where S s the scale factor,

Equations (4,2.19) und (4.2.20) ure the basis of the plotting Table 4.2.1, for ¢y = 45°
and Ag = 0% No generulized grid is possible: cach map is the cholee of the user, The grid
that resubted (or this arbitrary cholce 3 bigure 4,21,

e M EOTD U TR

Two stundard parullels may also be selected for u secant cone, This projection 18 also
culled the Albers projection. The radll on the mup for the standard pueallels Is:

picy = Roeoseg (

4
pacy = Reosgs (4.2.20) l

From (4.2.8)

s = ARcosgd; _ AR vosgs y s
0=uy\= Y = ) ' (4.2.23

Substituting (4.2, 21 and (4.2,2D) into (4.2,11) yivlds

R2 ¢os? IR2
of

'
R2 cos2 ¢ + 2R2ep singy — ofey = v (4.2.24)

R? con? aR2
Rlcovds . . ”—!L singy + 1y
of 4 )

R? cos ¢y + 2RZepmingy — ofey = 0, (4.2,25)
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Table 4.2.1. Conical Equal Ares Projection,
One Standard Parallel,

Equal Area Conlcal One Standard Paraliel

Latitude®

60,0000
0.000C
0.0000
0,0000
0.,0000
0.0000
0,0000
18,0000
1t .,000¢C
16,0000
15,0000
16,0000
18,0000
1%,0000
30.0000
30,0000
30,0000
30.0000
30,0000
do0.0000
30,0000
«5,0000
w8000
«5.,0090
M510000
45,0000
4%,0000
“%,0000
60.000U0
00,0000
60.,0L000
60,0000
w0,00C0
60,0000
60,0000

do = 48°
N =0

Longitude®

0,000
16,0800
30,0000
LS Jnpon
h0,0000
750 00¢
20,0010

g.onnen
15.0000
20,0000
4540030
£0.0000
75,0000
90.0000

0.,0010
15,0000
3047000
4% 40000
¢0.N0N0
’5.0“00
q0.M0N0

N.0010)
16,0040
Jo.0NN0
by 4NNNY
F3.00N00
7440000
20,0000

0.,00n0

15470620
30,0070
wHe0000
ANLPON0
TE.0000
A0,0070

*Dagrees
“"Moters

b LA

0.000

2,033
3,997
5,82%
Te0L83
84827
3.699
0,000
1,769
J.676
S¢0060
6,40
7.67%
8,607
g.000
YA
2.906
by ?35
5,419
Genl?
74197
0, 000
1174
243098
3,3¢3
“we 303
5,096
5.715
0,000

« 871
1.712
2,498
3,193
3. 781
be 240

yeo

“esbE9
sLybL80
'30921
'!o 009
'1.77ﬁ
-, 288
1,073
«3,227
-3,063
-2,.876
'1.7&“
- 712
o602
7,143
'1|b5“
'10517
«1,109
-y bi?
s 450
1,048
2.812
« 000
1109
032

' 989
1,670
2,563
3,546
1,646
1,727
1,966
2,187
2. 088
3.532
b, 277

e T — i T R S e e R R T T e AT
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Equations (4.2.24) and (4.2.25) can be solved simultaneously forey.
R2 cos2 ¢, — R2cosdgy + 2RIc)sing) ~ 2R2¢; singy = 0
costey ~ cosdgy = 2¢; (singa —singy) .

- Cost gy = cosiq)z
U7 ingg ~singy)

L Sindgy ~ sin? ¢,
® 2win 2 —sing))

- -% (s dg +sing)) . (4.2.20)

Substituting (4.2,26) into (4.2.23)

0 = 32‘- (in gy +sln o) . (4.2.27)

Substitute (4,2,26) into (4.2,11)

_4R%ying _ 44
p) 22
* ey + der * sinds TG (4.2.28)

Fvalunte (4.2,28) at ¢y

. _AR28ngy 5

' ot Tyngy + shey S '.
4R sln gy ,

§ o LA 4 WO ) .

¢ = o} + sing + singy t42.20 ‘

Substitute (4,2,29) into (4.2.28)

(sinm ~Ning) .
2 . 2 oot ‘2“ f
b pl + 4R singy + sing; 14.2.30 t

wliere, from (4,221 und (4,2.20),

R eosgy )
=2 ».|3|
: PUT NGy + sikgy (4 )

TR Y 2 ATV A U TR A Ao is ectdiday gt 5 rogmL
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A simblar development will give

o1 w p} + 4pa ey —sing) (4.2.32)

sing) + sinda

IR i T e

- 2Rcoidy
P1 = g, + aings ' (4.2.33)

1t only remaing to substitute into (4,.2,12) to obtain the plotting equations. One form

ol these Iy

. Wingy ~sing) . [ !
x =8 /pf 4R? ETJTTWE sin [-.-2- (sin ¢y +sln¢:)]

(4.2.34)

l AM\
O {-% (py +p1) - l/pf + 4R? %’%?lﬁ:-:—:‘% CON [% (sin ¢, +sin¢2)]
(4.2.35)

whetre S 18 the seale fuctor,

The second form is

2
A N=E S '/pi + AR gy ralng) sin [l‘, (sing, +ninq‘1:)]

(4.2.30)

: /AR sy ~ sing)
H y o= § {’lj {py +p2) = Vpi + :m—;"—j}:(m‘ﬁ- Cos [7:\ (sin ¢y +sln¢z)] .
' (4.2.37)

The grid is shown in Flgure 4,22 Tor the two standard paradiel case. The plotting table

for the geid is Tuble 42,23,
The standaed paraliels were chosen us ¢y = 30°, and @3 = 60°, The central meridian is

M= 0°,
A second approach can be tollowed Tor the single standurd parallel case,

Conshder w cone with constant sin ¢, and let py be the radius on the map of the
stunddard parallel ¢g. The wrea on the cone bounded by that parallel is 1rpf, singg., oy

the radivg of uny other parallel of latitude @, then the aren bounded is #p sin ¢, The

are I the stelp between thiese parallels s
(4.2.38)

A= mlpd = pd)singg .
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Pigure 4.2,2, Conical equal area projuction, two standard paraliels
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Table 4.2.2. Conical Equal Area Projection,
Two Standard Parallels,

Equal Area Conlcal Two Standard Parallels

Latitude* Longitude* Xe yhe

15.0000 p.0n00 0.0040 =3.,'32&
1F,0000 15.0000 1.728 =3,169
15,0000 30,0000 3,396 «2,710
1,0000 45,0000 Lb.959 =1,961
1¢€.,0000 60.00120 6, 363 -, 946
30,0000 0.0000 0,000 «1,709
30,0090 15.0000 1. 438 1,580
do.C000 30.0000 2,831 «1,197

30,0000 L7.0000 4y133 - 573
30.0000 go.0000 5, 300 273
45,0000 N.0000 0. 000 -, 004
«8,0000 15.0000 1.,13% « 008
45.0000 30.0000 2.234 & 00
+5.,0000 LH 0000 3,262 + 893
«5.,0000 60,0000 4, 185 1,560
60,0000 0.000° 0,000 1,709
60.G000 15,0000 + 230 1,783
60,0000 30.00NQ 1,634 2. 004
60,0000 w5,0000 2,386 2. 365
60,0000 €0.0000 3.0862 2. 853 l,
7£.0000 0.0000 0,000 3,232 E
7¢.0000 15,0000 ' 560 3,282
78,0000 20,0000 1,101 3, &31 |
75.0000 Ls5.0000 1.608 3.674 i
7€.0000 6040010 2. 063 t.003 ;1
¢ = 30° *Degrees %
¢2 = 80° “*Maters )
=0 ’




The arew on the authalic sphere between the paraliels ¢o und ¢ is

A = 27R2(sing —singy) . 4.2.39)
For equal areq, equate (4.2.38) und (4.2.39).

m(p§ = p?)singy = 2aR2 (sing = sin ¢g)

(03 = p2)singy = 2R2(sind ~ singy) . (4.2.40)
Substitute (4.2.13) into (4.2.40),
sinpp (R2 cot? ¢g = p2) = 2R2 (sin ¢ — sin @)
2 ot dn — p2 = R2 NG _ opa
R2 ¢cot2¢g p 2R S oy 2R
2 m R2eoton + IRD - qp2 ¢
7 RZ cot?¢y + 2R 2R T én (4.2.41)

Equation (4.2.41) Is the eciuivulent of (4.2,19).

Note the difference in the length of the derivations between the first and second ap-
proaches, While the method of ditferential geometry seems mote tedious, 1t will pay divi-
dends in Chapter 7. The equutions for a quantitative estimate of distortion will be seen to
follow from the differential geometry upprouch. The second meuns of derivition leaves the
reader without a convenient way ol exploring distortions,

Similarly, the cuse of Albers projection with two stundard puaraliels can be handled
with an alternate approach. :

Let @y und g2 be the latitude of the two stundard paraliels, and py and pa be their
respective rudii on the projection. Let ¢z be greater than ¢y, The constant of the cone is ¢,

The urea of the strip of the cone between these latitudes is
A= empt - od. (4.2.42)
The urea of 4 zone of the authalic sphere between the given latitudes is

A = 2R (singy = singy). (4.2.40

For the equal arca projection, equate (4.2,42) und (4.2.43),

i

emp} = p3) = 2R (singy ~sin )

i

c(p%—pg) 2R (singy =~ singy) . (4.2.44)

G e il 1 1
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Since the stundard parallels are true tength, equate these parullels on the map, and on

the authalic sphere.

12

2ro1e = 2rRcos @y, py = ——e——

2mpac = 2R cos g2, P2

Substitute (4.2.45) and (4.2.46) into (4.2,44),

(R: cos? ¢,
C

We have now reproduced equution (4.2.27)

o2

_ R2cos? ¢;>

c

2R2 (singg —sin ¢y)

cos ¢y = cos? gy

¢

= 2(singy —sing,)
cos? 9, — cos?dy
2(singg ~singy)

sin2 gy — sin? @
2(singy = singy)

(sin ¢ +sin ¢2) .

ro}—

Substituting the constunt of the cone into (4.2.45) und (4.2.46)

PU = Singy + sines

P2 =

2R cos ¢

2R cos g9

sing; + sing, |

This has reproduced (4.2.31) and (4.2.33)

A
P

(4.2.45)

(4.2.46)

e

Rty e Yoreert e

To find the value of p for o general latitude ¢, again equate the area on the map und 'i

the area on the authalic s

This reproduces (4.2,30),

phere,

en(p? “Pf)

p?

il

R (sing, ~sing)

ot

2

+ 2R2 (sing; - sing)

4R2 (sin¢) —sing)

sing) + sing;

M R AR
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The Albers projection has been used extensively in geographic ntluses to portruy areus
of large eust to west extent, The two stundurd parallel case has been successfully used for
mups of the United States, since distortion is n funetion of latitude, und not longitude. An
estimate of the distortion inherent {n this projection is given in Chapter 7.

4.3 Azimuthal Projections [2], [20], [22]

The Azimuthal Equal Atea projections may be polar, equatorial, or oblique projections
of the uuthalic sphere directly onto u plane, Two methods of derivation of the polar cuse
will be consldered, Then, it will be noted how the oblique und equatorial cases canh be oh-
tuined by the rotational transtormations of Chapter 2,

The Azimuthal Equal Aren polar projection (ulso called the Lambert Azimuthal Equiva-
fent projection) cun easily obtulned from the Conical projection with one stundard purullel
by setting ¢y = 90° in equations (4.2,14) and (4.2,17).

0= A 4.3.1)
p = R\2(T=sing). (4.3.2)
The plotting equations, in Carteslan coordinates, are, including the scule fuctor, 8,
x = R+ S/IT=5e) sin (4.3.3)
y = =R+ 82(T=sM@) cosA. (4.3.4)
The result of plotting these formulus (plotting Table 4.3.1) is Figure 4.3.1. The paral-
lels ure concentric cireles, unevenly spuced, and the meridians arve straight lines, The distor-

tion becomes severe as the equator is reached.

The sevond way to derive the polar case Is equally brief, The area of the segment of
the nuthalic sphere surrounding the pole, und above the latitude ¢ is

A

it

2rR(R - Rsing)

2eRI(1 ~sing) . (4.3.5
This wil be transtormed into u cirele of radius o with nrea
A= mp?, (4.3.0)
Equating (4.3,5) and (4.3.0)
el = 2RI - sing)
p = R/I1T=%ngd).

Equation (4,3.2) has been duplicated.

En SR DS A1




Table 4.3.1. Azimuthal Equel Ares Projection, Polar Case.

Latitude*

0.0000
0.0000
0,0000
0,0000
0.,0000
0.0000
0.0000
18,0000
15,0000
16,0000
1€.0000
18.0000
15,0000
1%,0000
30,0000
30.0000
30,0000
30.0000
30,0000
30,0000
30,0000
4L.C000
+8.0000
4B.000C
-8s0000
w5.0000
“wE N000
w5,0000
b0.0000
v0.0000
60,0000
60.C000
B0sL0ON
bC.00N0
60,0000
re. 0000
rearnng
TE.u000
rLL,n000
Fs.000U0
FEWINGE
TELNGD00
30,0000
20.0000
3000010
90, 40N0
90,G0N0
q0.L000
eC.rgnn

¢o = 90°

> imwrnds
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Equal Area Azimuthal
Longituce* b Sd
0.0000 9,020
1%.00%0 8,713
30,0000 T.812
45,9000 §,37%
80,0000 45140
7540070 2,33
@g.00n0 -, 000
0.0000 7.766
15,3070 7.501
30,0000 6.72%
LB,0000 beudl
40,0000 S, 88Y
78,0000 2,010
Q0,0000 =, 000
0.9000 6,378
15,0000 c.181
T0.0000 S.524
5,0000 40510
60,0010 3.189
78,9010 1,651
a0.,0nn0 =, 000
0.00J)0 4,082
15.0010 beT1%
30,0070 4y 228
«S.0000 3, L582
60,0030 2, 441
*8,0000 1.26%
20,0010 =, 000
1.0000 3, 301
15,0010 1,189
10,9020 2,089
L5.,9010 2,334
£0.0000 1,051
8,000 0 o B50
A0.N200 -y 002
2.,08%N 16e”
1742220 1,60
J3N.0030 10 k2
Lie0700 1,177
t0,n090 1932
PELONIQ en3y
99,000 =, 00"
B40UdN +0UN
16,0000 «+ 000
1040670 « 000
e, 040 v !
£0.0010 ' 400
Te00an « 000
ag.non0 - 000
a0 *Dagrens

Yo

0.000
2,338
Lo 810
6.378
Po012
1,713
9,020
0.000
2,010
3.803
TR I
.72
7.204
1,768
0,000
1,681
3. 449
+. 810
5,526
be1614
£ X728
0,000
1,283
'S LT
3, kb2
4,223
718
4+ 882
0,000
v 854
1,651
2,338
?,88%9
7,184
%, 3014
0,000
o U3
A2
1,477
1, 642
1, €08
1.fFb5
0,000
» 000

v 000
LR
v 000

' 000
000

*oMaters

o Bl et
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180°
210 180°
m‘. 120°
270 %0’ ,
i
L1 i
300° &«
ac* t
b
|
3% 0' 30“ i
; ;

Figure 4.3.1. Azimuthal squal area projection, poler case
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The oblique und equatoriul cases cun be obtained from the polar case by applying the
rotutions of Section 2,10, This has been done in generating the plotting of Tables 4.3.2 und
4.3.3, and Figures 4.3.2 and 4.3.3. For Figure 4.3.3, the point of tangency of the plane
against the sphere wus arbitrarily chosen ut 45° north latitude,

1 To obtain the oblique varlation, write (4.3.3) and (4.3.4) in the suxiliary coordinate
¢ system,

1 x = R+ 8/20=sMmN) sine (4.3.7
S ; y = R+ 8/TT=sInh) cosa. (4.3.8)
é' From (2,10.4) and (2.10.5)

sinh = singsingy + cosg cosdy cos A (4.3.9)

sinA_
cosdp tand = sind, cosA

tung =

BTl TS LY A e 2

-1 sin A )
« = tun (cos¢,, tang = sin @y cos (4.3.10)

G e

Substitute (4.3.9) and (4.3,10) into (4.3.7) and (4.3.8),

IR

x = R+ 8 /201 ~sing singp — cong cosd, cos N) )

T

; - sin A
: Xsin [t“" (cosqs,, tane - sing, conk)]
‘ L @.3.11)

y = R §2(1 ~singsing, = cosd cosdp cos )

. .l sin A o A
X coy [tun (cos op tang — sing, cos A)J J

To obtuin the equatortal azimuthal equal aren projection, substitute ¢g = 0° into
(4.3.11)

sy

x = R+ 8§ /201 =cose cosh) sin [tun“ (?—:ﬁ-’\%ﬂ s
(4312

' |

The formulus for the distortion In the polar cuse are given in Chapter 7,

y = R ¢« 80 {/2(1~cose cosh) cos [tun" (%‘%)}
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Table 4.3.2, Azimuthal Eyual Area Projection, Oblique Case.
Equal Area Azimuthal, Oblique Case
Latitude* Longitude* Xoe Yo

OOUOOU 0-0000 -.UDO 'Y 632
040000 30,0000 3,852 “b, 350
0,0000 60,0000 6. 714 =2, 741
0.0000 90,0000 9,020 » 000
36,0000  0.0000 =, 000 “1,668
30,0000 3040000 2o BLG “1,162
30,0000 #0.0000 5,251 ' 332
30,0000 90,0000 5071‘! 2,741
80,0000 0.0000 0,000 1,665
60,0000 30,0000 1.628 1,994
€0,0000 40,0000 2,920 2,037
§0.0000 90.0000 3.552 b, 350
90.0000 0.0000 ‘0000 b, 882

90,0040 30,0000 + 000 v 842
90,0000 60,0010 « 000 L, 802
90,0000 ap.0000 + 000 +. 882
do = 48° *Degrees
=0 **Metens

L ]

I RO+ ety ommiouomrtlieect toraee oo s
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~, P Table 4.3.3. Azimuths! Equal Area Projection,
i e Equatorial Case.
ey
:.4.;;‘ Equal Area Azimuthal, Equatorial Cans
%,’i‘t Latitude® Longitude* b S Yo
- 0.0000 0,0000 . 000 , 000
0.2000 15,000 1,688 , 000
¥ vy 0,0000 20,0000 3,302 , 000
L 0,0000 43,0000 “we 882 1 000
: 0,0000 $0,0000 8, 370 , 000
? L) 0.,6000  *5.0000  7.7686 . 000
- 0,0000 90,0000 9,029 ., 000
18,0000 0.00CD 2. 000 Ly R4S
18,0000 18,0000 1,822 1,679
: 18,0000 10,0000 3,218 1,723
i 15,0000 L5 40000 4o k9 1,800
- {E.0000 $0,0900 5196 1,947
. 15,0000 75,0000 7.527 2,088
- 15,0000 90,0000 8,713 2, 338
L 30.0000 0.,1000 0,000 3. 302
- 30,0000 15,0000 1,692 3.328
5 30,0000 30,0010 2,993 3,409
2 30,0000 48,0000 by 380 3,582
ﬁ 30,0000 £0,0000 5,881 3,768
: 30,0000 75,0090 beB20 b 076
: 3040000 90,9000 74812 b £40
] «%,0000 do 0000 Uedon he AB2
{ 48,0000 18,0000 1.272 49186
: “5,0000 30,0090 24541 £, 023
i &5,0000 wdN0U0 3.682 B, 208
2 4%,0000 $0,0000 WoTh? b8
«®,0000 78,0090 5. hbk 5,884
45,0000 00.N0"0 6378 6,378
60.0000 0.0000 0.000 by 378
60,0000 15,0000 <489 Y
$0,0000 30,0000 1,884 5,976 )
80,6000 45,0010 24 Tt b, 71k i
60,0000 £0,2070 3,493 b, 987 i
60,0000 76,0000 w, 099 e384 , .
60,0000 00,0000 wib il Y !
7%.0000 0,000 0,000 7,768 ;
t8.0000 1. 0000 Ty *, 70} . y
15,0000 30,0010 1,068 Poare
78,0000 4540000 1,511 ", 011 ;
78,0000 RY,0010 1,902 £y 498
7€,0000 7540000 P18 A 1] ,
7¢,0000 90,000 2, 38w 4,713
90,0000 'ILL « 00 2,020
90,0000 18,0010 000 Q, 020
30,0000 30,0020 ¢« 000 a2, 020
90.0000 Lie0UNN 00n 3,020
30,0000 60,001° . 000 3,020
9047000 ", 0nno « 000 3,020
90,1000 9040030 . 000 3,020
do=0 Aguo *Degrom  **Matans
bl §
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4.4 Bonne's Projection |21, (8], {20)

Bonte'’s projection is u modified conleal equal area projection. The only straight line
In.the map is the central meridiun, which is a section of the cone and the central meridiunal
plune. ‘

On the authalic sphete, .,

ds? = R2 g2 -+ R2 con? ¢ dN?

¢ =R 4,4
1 13 ll)
g Ricose (

In the p!u_ne. u palur cootdinate systom haos

ds? = dp? + p2 4o

E =
' (4.4.2)
(G m pz

The condition foy equivakeney ol ared is

b dpf
E F|l]ag oA
g -1t = 44.3)
F Gllao a0
dp 0N

On the sphere, =0, 0On the plane, = 0 on the central meridian,  Substituting
these into (4.4.3).

o 0ol
d  OA

ep = LG : (4.4.4)
)
do O\

The radius ol the paralle! cirele of latitude ¢ is
P
p = py - R k‘(b. {44.5)

Yo
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y From (4.4.5) -
dp
: EY R
; B |
- o " O
ik
X Substituting (4.4, 1), (4.4.2), and (4.4.6) into (4.4.4)
-R o]

4 cos?
1 R4 cosip = p2 a0 20
7 , ap 9
1
QQz
v = 2 2 »
Rt (§)
RNY) .
Reose = p (m\) ' D

Convert (4.4.7) into an ordinary differential equation, and integrate.
Rcosg dh = pdo
AR cos¢ = p0 - ¢
AR cos ¢
0= p ¢,
The constant ¢ s zero if thie condition is imposed thut X =0 when 0 =0,
= ARcos®
0 p
po = R oot gy .
Carrying out the integration of (4.4,5)

P = po = R{d-¢n).

W m-tr ruun\ v
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In Chapter 1, it was noted that for u conleal projection, tangent to o sphere,

(4.4.6)

(44N

4.4.8)

(4.4.9)

(4.4.10)
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Substitute (4.4.9} into (4.4.10),
o
) p = Rcotgg = R(d=eq). - (4.4.11)

The Carteslun plotting coordinates follow simply, with y-axis as the central meridian,
und the origin corresponding to dg, from (4.4.8) and (4.4.11),

X = pS sin(ﬂ‘—,ﬁ-"-"-"-) (4.4.12)
y=8§ [R cotdg — p cos (E%.’E.‘[’.)] (4.4.13)

where S is the scule fuctor und A s in radians.

The Bonne projection cannot be generalized, 1t applies to a specific cuse, with u specis
fled standard purallel, ¢p. Ih order to demonstrate the projection, a plotting table for
@0 = 45 hus been placed in Tuble 4.4.1,

The Bonne projection has been used as a military map by France,

© The grid {tself {9 given {n Figure 4,4,1, Note the curvature of the meridians, and the
fuet that thw parallels of latitude are concentric clrcles,
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Tabls 4.4.1. Bonne Equal Area Projsction.

Latitude®

0,0000

0.0000

0.0000

06,0000

0.0000

0.0000

0.,0000
1€,.,0000
15.0000
15,0000
15,0000
15,0000
1£.,0000
18.0000
30,0000
30,0000
3o.0000
30,0000
30.0000
30,0000
30,0000
%5,0000
+5.0000
25,0000
«5,0000
L5.,0000
+5.0000
45.0000
60.0000
50.0000
60,3000
60.0000
60,0000
60,0000
6l0.0000

¢o = 48°
o™ o°

UMM . ) BV L Pt e

Bonne
Lonygitude*

0.0000
15.0000
10.0000
L5.,0000
60,0000
7540000
90,0070

0.0090
150000
30,0020
45,0000
60.0000
75,0000
90.0000

0.,0000
15,0000
30.000¢0
L5,0000
60.0000
75.0030
90,0010

0.7000
15,3000
30.0000
LS ,0000
A0.0000
75.0000
90400930

0.0000
15.0000
30.9000
u5.0000
60,0000
75.0000
90.0000

*Dagraes
**Maters

x’&

0.000
1., b6 4
3.292
4o 849
6,303
7.5
8.775
0,000
1. 8600
3. 167
n.&ki
5.988
7.170
8., 15%
0.000
14438
2,830
be131
5,299
5,296
7.091
0.000
1.176
2, 30R
3,363
4,303
5. 096
5., 715
0.000
« 831
1,635
2. 38R
3. 066
3. 649
4 116

Yh»

5.009
b, 887

~h,523
~3,925

3,106
2,083
=, 879
3.340
3, 20€
2,809
2,160
1,275
-, 181
1,094
1.6790
1,540
1,156
=, 829
v 321
1,366
572
+ 000
+109

b 32
« 959
1,670
2,543
3,546
1.670
1,764
1,963
2,320
2,805
3,602
+, 093

e
A
L
R

Py

o T
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4.5 Cylindrical Projection [2], [15], [20], [22]

In this projection, the meridians and parallels are straight lines, perpandicular to one
another. The lines representing the meridians are equally spaced along the equator. It re-
i mains to space the parallels according to the requirement that an area on the projection is
; equal to the corresponding area on the authalic sphera,

R ST Nt T T T o

,; ! Since the meridians are perpendicular to the equator, and equally spaced, the ubsclssa is
I
’ x = RS (A=) (4.5.1)
1 where 8 is the scale fuctor, and N and Ag ure in radians. The longitude of the central
- meridian is Ag.
Conslder the projection from the authalic sphere to u plune, rectungular coordinate
- system, For the plane
ds? = dx? + dy?
T
- E=
F,r‘l ' (415-2)
. G=1
[
3 For the sphere
| de2 = R2dg? + R2 cos? UM ,
8 ¢
_'. ¢ = R? (4.5.%) Z
g = R2cos2¢. i
The condition for equivalency of urea s, again f
2 i
dy dy ;
E K| (8¢ 0N |
og = 2 = (4.5.4) a
Gy [ox Bx
09 0
Since both systems are orthogonal, 1= [ =0. Substituting this into (4.5.4)
1
2
by
3¢ OA .
g = EG » (4.5.%9)
| ax 0% .
|

e e Ty




L UL A

RS AAEMAAARE

127

From (4.5.1), and omitting the scule fuctor,

X - :
26 0 (4.5.6)
i .

Y R, 4.5

Substituting (4.5.2), (4.5.3), (4.5.6), und (4.5.7) into (4.5.5)

oy oy’
R4 cosl ¢ = o oA
0 R
2
= R? (i!)
d¢
oy -
5 - Reos¢ . (4.5.9)
Integrating (4.5.9)
y = Rsing + ¢, 4.5.10)

The constunt ¢ in (4.5,.10) can he zero by selecting the orlgin on the equator, Including
the scale fuctot, (4.5.10) becomes

y = R Ssing, (4.5.11)

The sume result can be obtained In a different munner. The area of the vone below
lutitude ¢ on the authulic sphere Is

A= 2nRlsing . (451
The area on a cylinder tangent to this sphere at the equator is
A = 2nRy. (4.5.13)
Equating (4.5.12) and (4.5.13)
2nRy = 27R%sing

y = Rsing.
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This duplicates (4.5.11). The second method was the one originally employed, and gave the
projection its name,

The grid resulting from (4.5.1) and (4.5.11) is glven in Figure 4.5.1, Observe that dis-
tortion is intense ut higher latitudes, and the projection can be of real service only near the
equator, This consideration has limited the usefulness of the projection. Table 4.5.1 glves
the plotting coordinates. This projection is also graphically constructed.

R0 JIVRE I T TR T T R T O S

This projection can be made oblique by applying the rotation formulas of Chapter 2.

If this Is done, the area adjacent to the grent circle tangent to the cylinder has a region
fuirly free of distortion.
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Table 4.8.1. Cylindrical Equal Area Projection,

Latitude*

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
30.0000
30.0000
30.0000
30,0000
30,0000
30.0000
30,0000
60,0000
€0.0000
60,0000
60,0000
60.0000
60.0000
60,0000
90,0000
9040000
90,0000
90,0000
90,8000
§0.0000
30.0000

¢ =0
N =0

Equal Area Cylindrical
Longitude* Koo
0.0000 g.000
10.0000 3,340
60,0000 $.679
an.0000 10,019
120.,0000 13,359
180.,0000 14,698
140,0000 20,032
0,000 0,000
30,0000 3.340
f0l.0000 648679
90,0000 10,019
120.,0000 13,389
1%80.,0000 16,898
140.0000 20,038
g8.,00a0 0,000
30,0000 8. 340
60,0000 0. 879
90.0000 10,049
120.0000 13, 359
i50.0000 16,694
180.0000 20,038
0.0000 0,000
X0.00n0 3¢ 340
60.0000 6.879
90.0000 10. 019
120.,0009 13,389
1%0.0000 16,697
10,0000 20,038
*Degrees
**Meters

Yoo

0,000
0.000
0,000
0. 000
0. 000
0.000
0,000
3.189
3.189
%, 189
3,189
3.189
3,189
3.189
5:524
5,524
S 5204
3,824
5.524
5.524
5.524
B+ 378
6. 378
5,378
6. 378
5,378
b 378
6. 37A

i

*
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4.6 Sinusoidul Projection |81, [15], [20]

The Sinusoidul projection, also called the Sanson-Flamsteed projection, is a projection
of the entire authalic sphere. Essentlally, it is derived from the Bonne projection by setting

én =0, Then, o upprouches intinity,
On the authalic sphere,

ds? = R?¥d¢? + R2 cos? ¢ dN?

e = R? }
g = R2cosie

On the plune, in Cartesian coordinates,

ds? = dx? + dy?

u=|}
G= 1

On the sphere,

f=10
and ulong the central meridiun,
F=0,
The equal aren condition Is
2
ox  ox
E F||o¢ oA
ep — (1 =
F Gl |2y dy
0  OA

Along the meridian

y = R¢.

4.6.1)

(4.6.2)

4.6.3)

(4.0.4)

(4.60.5)

(4.0.0)
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Therefore,

. ¢ (4.6.7)
oy :

_=O

¢

Substitute (4.6.1), (4.6.2), (4.6.3), (4.6.4), und (4.6.7) Into (4,6.5).

R cos¢ = g_xi (4.0.8)

Convert (4.6.8) into an ordinary differential squation, and integrate,
dx = Rcosg dA
X = ARcosg + ¢,
, Sincex =0, whenA=0,¢=0,
3 X = ARS cos¢. (4.0.9)
From (4.6.6)
y=R:+S+¢. (4.6,10)

Figure 4.6.1 18 u Sinusoldul projection of the earth. All of the purallels are straight
linos. The meridians are sinusoidul curves. The central meridian und the equator are stenight

lines.

The Sinusoldal projection is used for geograpticul maps, The distortlon at extreme

Tlatitudes and longltudes is simply ignored, A plotting tably is in Tuble 4 6.1,
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Tabls 4,8.1. Sinusoidal Projection,
Sinusoidal
Latitude* Longitude* Xoe Yoo

0,0000 0,0U00 0,000 0.0
040000 30,0000 3,340 0,000
0,0000 50,0000 5079 040
0,0000 90,0000 10,019 0,000
0,0000 120.0000 13,389 0,000
0,0000 15040000 16,598 0,000
0,0000 150,0000 20,038 0,000

30,0000 040000 0,000 34340

30,0000 30.0000 2,892 3430

30,0000 60,0000 S.784 3, 340

30,0000 90,0000 877 3,340

30,0000 120.0000 11,569 2,340 s

30,0000 180,0000 Liotbl 3,340 , N

30,0000 140,0000 17,353 3,340 ‘ :

50.0000 D,0000 0,000 teB79 ' o

60,0000 30,0000 1,670 Ee679 : . h

50.0000 ©0.0000 30360 6e679 :

600000 60,0010 54009 BBT9

60,0000 12040000 be0?9 CILYE

80,0000 41%0,0000 Be 349 6:679

60.0000 180.0000 10,049 6.679

90,0000 0.,0000 04000 10,019

90,4000 30,0000 “s 000 10,049

90,0000 6040000 -, 000 10,019

90,0000 90.0000 -.000 10.019

90,0000 120.0000 «,000 10,019

90,2000 450,0000 -,000 10,019

90,0000 180.0000 «,000 10,019

EPbe;

=y e

Gl

T I T e

¢ov 0 *Dogress
No =0 **Moters
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4,7 Mollweide Projection {151, ]22)

The Mollwelde (Elliptic) projection of the nuthalic sphere is derived from the construe-
tlon in Figure 4.7.1, All of the meridians are ellipses. The central meridian is o retilinear
¢lipse. or straight line, und the 90° meridians are ellipses of eccentricity zero, ot clreular
ares. The equator and purallels are stralght lines perpendicular to the central meridian, The

central meridian nnd the equator are true length.

The main problem in this projection is spacing the parallels so thut the property of
equivalence ol aren {x maintulned, To do this, upply the law of equal surface from the
authulic sphere to the planar mup,

The aren of the clrele ¢entered ut O s

Al = md, 4.7.1)

This 18 to be equal In area to a4 hemisphere

Ay = 27R?, (4.7.2)
Equating (2.7. D) und (4.7.2)
“ m? = 2aR?
r? = 2R? (47.%
r= TR, (4.7.4)

Conslder Figure 4.7, 1, The uren between latitude ¢ on the sphety, und the equator is
A= 2mR%sing. 4.7.%5)
This nrea 48 equat to the aren AEEFT on the figure, For a clrele inseribed within un ellipse,
where the radius of the crele is one half of the semi-major axis the area BRGH equals one

halt of the uret AEFT {171, Consider Ll of the area BDGH, that Is urew CDGO. This areu
Is composed of the trungle OCD and the sector ODG. The uren of the trangle is

Ay = l,‘ rsindreost

r? .
iy sin 20 . (4.7.)
The uren of the sector Iy
) .2
Ag = 52 7.7

[EVRIUIOIESI B
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Equate the spherical area and the map area through (4.7.5), (4.7.6), and (4.7.7),

2R sing = 4(% 20 + & 2 in 20)

7R2sing ~ r20 + -% 12 sin 20, (4.7.8)

Substitute (4.7.3) into (4.7.8).
7RI sing = 2R24 + RIsin20
msing = 20 + sin 20, (4.7.9)

We are now taced with o transcendental squation to be solved for 6. For limited
ueeuracy, o graph of @ versus ¢ can be constructed, us bn Figure 4.7.2, and values of 0 read
for given values of ¢. However, for computer implenientution of this projection, it is neces-
sury Lo resort to o numerienl solution,

Apply the Newton-Ruphson method [ 14], Write (4.7.9) us
(0 = nsing — 20 - sind0 = 0, (4.7.10)

Differentlating (4.7.10)

' ' = =2 = 2cos 20, .71
The iterative solution of (4.7.9) for 0 as a function of ¢ is
) -l
K n "'(0“’ !
thstiﬁlfe (4.7.100 und (4. 7.1 D into (4,71 ),

Opiy = 4700

!

malng - 2y -osin 0,

" =
el " 2+ ook,

0

wlhiere By, s Bnradbuns. This has o eapid convergence 1 the inftial guess For 0 s the given
vidue ot ¢,

Onee 0 {8 found, the mapping equations quickly tollow from Figure 4,7.1,

y = R*S8sinog (7.1
A=A

X = (—TH(\(—)) 8¢ drcoso
(A A .
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s where r is glven by (4,7.4), S Is the scale factor, and A and Ag is in radions, The central :5,
meridian has longitude Ag. it
The result of applying (4.7.13), (4.7.14), and the iteration is the grid of Figure 4,7.3. ‘
1 The clstortion towurds the poles is not as great us in the Sinusoidal projection, but it is more '?
noticeable than in the Hammer-Aitoff projection. The chief use of the Mollweide projection i
is for geographical illustrations reluting to area, where distortions are not disturbing. ¥
’ Plotting tables for the Mollwelde projection are given in Table 4,7.1, Latitudes 0° to |3
90°, in steps of 30°, and longitudes 0° to 180° in steps of 30°, are tubuluted. i
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Table 4.7.1, Moliwelde Projection,

Mollwside

| Latitude® Longitude* Xoo Yo

; 0.,0000 0.0000 04000 6,000

i 0.,0000 30,0000 34300 0,000

: 0.6000 £0.0000 64679 0,000

! 0.0000 A0.003J0 10,019 0,000

¢ 0,0000 120,0000 13.359 0,000

: 0,0000 1%0.0000 16,698 0,000

: 0,0000 180.0000 20, 03% 0,000

; 30,0000 0.0000 0,000 ke 007

; 30,0000 3001030 3,085 e 047

: 30,0000 6040000 64110 he 047

i 30,0000 80,0000 9,165 b D47

] 30,0000 120.0000 12,220 TN ;

: 20,0000 150.,0000 15,278 be 0W7

: 30,0000 1800000 18.330 be 047

! 60,1000 0,0000 04000 7,638

\ 50,0000 30,0000  2.161 7,638

1 $0.0000 £0.0000 4327 7,638
60,0000 60,0000 6.uBY P, 638
60,0000 17040000  8.64b 7.638
50,0000 150.0070 104806 7.6 38
60,0000 18040000 12,967 v, 638 i
30,0000 0,0000 0,000 10,018 ;
30,0000 39,0070 0,000 10,018 :
90,0000 £0.0000 0,000 10,018 :
90,0000 an,0000 0,000 10.048 ,
90.0000 120.0000 0,000 10,018 3
30,0000 4%N.N00C  0.007 10,018 '
30,7000 1A0,N08% 0,000 10,018 %
$o = 0 *Dugrees :
Ao » 0 **Metars
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4.8 Parabolic Projection [8], {151, [22]

The Parabolic (Craster) projection of the entire world is shown in Figure 4.8.1, The
purillels are straight lines parallel to a straight line equator. The meridians are parabolic arcs,

The Parabolic projection can be constructed from consideration of Figure 4,8.2, Lot
the equator be four units of length, Then, the central meridian is two units, A scale factor
will be applied at the end of the detivation to convert the assumed units to the equatotial
circumference, At present, R is the radius of the authalic sphere.

Consider the shaded areu in Figure 4.8.2, bounded by an outer meridian, the centeal
meridian, and the equator, The outer meridiun is taken to be a parabola, y2 = x/2, with {ts
vertex at (0, 0). The mapping criterion requires that one quarter of the area on the authulic

sphere will be equivalent to the shaded area between x = 0, and x = 2. Thus, one half of the
zone between the equator, and a given parallel, ¢, will be

Y
A= r (2=x) dy
*o

y
= f (2=-2y) dy
0

y
2
y 3 Y 0
-2y--§—y’. (4.8.1)

The total uren of the sphere is 47R2, Substituting this value, and y = | into (4.8.1)

R = 4/3 (4.8.2)
= ]/_‘l_
R 3n
= 0.651470,

Next, refate the map ordinate to authalic latitude. The arcs of a zone on the authalic
sphere from the equator to latitude ¢ is 2R2 sin g, Hulf of this zone is then

A= nR2sing. (4.8.3)

Equate (4.8.1) and (4.8.3)

y - % yd = R sing . (4.8.4)
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Substitute (4,8.2) into (4.8.4),

Jy -%y:‘ = = sing

e

y} = 3y + 2sing = 0,
A solution of this trunscendental cquution is
y = 2sin¢/3 (4.8.5)

which cun be verified by substitution, A scale fuctor, 8. und radius, R, may be introduced
into (4.8,5) to obtain the ordinate.

y = 28sin¢/3+ R. (4.8.6)

The abscissa muy be obtuined by the following development, The length ot a parallel
between the central meridian and the outer meridian is given by

Q=2 = 2y2, (4.8.7)
Substitute (4.8.8) Into (4.8,7),

= 201 ~4sin? /)

9
vz(l + 2 F - 2)

fl

i

a5 ene 28 _
2{2cos 3 1], (4.8.8)

The parallels are divided proportionally tor the Intersections ol the meridians, From
(4.8.8), and including the scale factor, S, and radius R,

(A "_)\ll) \
X T80 SR
_k ) Al
3—%(-)—-—"-- SR <: cos $ ~ |). (4.8.9)

I (8,93 A= Xy I8 the difference In longitude between the glven meridian and the central
meridion, in degrees,

Since this is an vqual area projection, its use I8 for stutisticul representution, No attempt
is made to avold distortion in angles and shupes, However, the distortion is tess than in the
Mollweide projection because the meridians and parullels do not intersect at such acute
angles,  Also, the symmetry and parabolle curves lend o certuin aesthetic guality.
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Equations (4,8.6) and (4.8.9) have computed in Table 4,8.1. This table gives the longi-
tude from 0° to 180° in steps of 30°, and latitude from 0° to 90° in steps of 30°.
Table 4.8.1. Parabolic Projection,
Parabolic
} Latitude® Longitude* X Yoo

nD.0000 0.,0080 0,000 0.000

00,0000 3040000 34340 0.000

0.0000 &0.00N0 6. 679 0., 000

0.0000 90.n090 40,019 0.000

0.0000 120.0000 13,359 0,000

0.0000 190.0000 16,698 0,000

0.0000 10,0000 20.038 0. 000

30,0000 040030 0.'000 3,480
30,0000 30,0000 2,937 3,600

0.0000 50,0020 5870 3.L80

30,0000 Q040000 3.840 3.480

30,0000 12040070 411,747 3,480

30,0000 1700000 14,68w 3,L80

10,0000 10,0000 47.681 3,440
E0.OQO0 0.0070 9.000 5,853
6C 0000 3040000 1.777 6,883
60,0000 £0.,0000 J.554 5.859%
60,0000 0,0000 5,331 $.853
60.00n00 120,0070 7.104 5,883
60.0000 1%0,00N0 8,085 5,883
60,0000 180,0000 10,662 5,883

90.0000 0.0000 0,000 10,019 i
90,0000 30,0000 -, 000 10,019 !
90,0000 60,0000 -, 000 10. 019 .
90,0000 90,9000 -,000 10,019 !
9010000 120.0000 ".000 100019

90.0000 150.,0000 -, 000 10,0149
90.0000 120.,0000 -, 004 10,049 b
oo =0 *Degrees !
AN =0 *"Moters
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4.9 Hammer-Altoff Projection

The Hammer-Aitoff projection, shown in Figure 4.9.1, is derived by a mathematical
manipulation of the Azimuthal Equal Area projection of Section 4.3, In the Hammenr-
Altoff projection, the sphere {a represented within an ellipse, with semi-major axis twice
the length of the semi-minor axis. In this respect, it is similar to the Mollweide projection.
Howe}\\/er. in the Hammer-Aitoff projection, the parallels are curved lines, rather than
straight,

The grid of meiidians and parallels is obtained by the orthogonal projection of the
Azimuthal Equal Area projection, Equatorial Case, onto planes making angles of 60° to the
plane of the Azimuthal projection,

Figure 4.9.2 demonstrates the means of projection. 1n this figure, we are looking upon
the edges of the planes, which appear as straight lines, Since the angle between the planes
Is 60%, DO = 2A0, and OB = 20C. Thus, the total length DO plus OC is entite equator, as
AB is half of the equator, It is assumed that for the HammerAitoff projection the total
map of the authalic sphere is obtained by unfolding DO and OC into a plane DOC, with 0
as the position of the central meridian,

In this projection, the ordinate is not modified from a comparable point on the Azl-
muthal Equal Area projection,

Converting to the coordinates of the auxiliary system (4.3.3) and (4.3.4) become

X=m RS, \/iil-—sh\ h) sina (4.9.1)
y = RS+ /I(T=sInh) cosex. (4.9.2)
From (2.10.4) and (2.10.5), for ¢ = 0°

sinh = cos¢ cos A, (4.9.3)

LYY

tan o fan o

L (sin

a= tan~! (mw) (4.9.4)

where A, Is the latitude on the azimuthal projection,

Substitute (4.9.3) and (4.9.4) into (4.9.1) and (4.9.2), und let A, =7/2.

X =2'R*84/2(1 =cos ¢ cos A/2) sin [tun'l (%%)] 4.9.%)
. Continued
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Figure 4.9.2. Qeomatry of the Hammer-Aitoff projection
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y = R* 8 /(1 =cos ¢ cos A/2) cos [tan"' (%1%%2-)] « (4.9.5)

Equations (4,9.5) gave the plotting relationship of Table 4.9,1,

That the area enclosed by the ellipse of the Hummer-Aitoff projection, corresponding
to the entire sphere, is twice the aren of the Azimuthal projection, corresponding to n
hemisphere, follows easily from the geometry of the ellipse with a circle of the radius of
the semisminor axis inscribed [17].

In Figure 4.9.1, the central meridion and the equutor are the only straight lines in the
grid, The rest of the meridians and parallels ure curves, The curvature of the purallels with
respect to the meridians is such that there is less ungular distortion than appears at higher
latitudes, and more distant longitudes in the Mollwelde projection.

The Hammor-Altoff projection ls used primurily tor statistical representation of duta,
The distortion thut occurs is overlooked.
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Table 4.0.1. Hammui-Aitoff Projection,

Latitude*

0.0000
g.u000
0eGGOU
0.0000
a.ug000
g«0000
0,0000
30,0000
3040000
30,0000
30,0000
30.0000
30,0000
30.0000
60,0000
00,0000
60,0000
60,0000
bU, 0000
€0.00079
60,0000
90,0000
90,0000
90,0000
90.00040
90. U000
90,0000
30,0000

¢o= 0
Ao = 0°

151

Hemmer-Aitot! Projection

Longitude*

0.0000
30,0000
60,0000
90,0000

120.0000
1t 0.,0000
100.,0000

04,0000
3040000
60,0000
9040000

120,0000
1,0.0080
130.0000

0.,0000
10.0000
60.0Q00
90,0000

1200000
16040000
18040000

0.0000
3n. 0000
©0.0000
G0.,0000

120,u000
18g.000rP
180,000

*Dagrees
**Maeters

X

«000
3.330
€603
9.763%

12,750
16,531
184040
0,000
24984
e 908
Be?700
11,303
13:.660
154623
0,000
143147
Je707
B.e82
6e9387
8.19%
9.020
-, 001

«000

« 0010

« 0090

o000

«000

o000

NIy (1 VT A T T L o R [ P e ey oty v g e R ¥h MU AN T AR Il T Y el T

Yo

« 000

v 000
+ 00N

o 00

+ 000

» 000

2 000
X302
3,374
I ng
T, 6892
2. 768
L,078
n.”to
€.378
6,415
fh,526
6714
€.,987
74351
7.RL2
a,nen
g.,020
9, 020
3. 020
9,020
9,020
0,070

T L Ly,

At AT I
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4.10 Interrupted Projections |22]

Interrupted projections of the authalic sphere are a meaas of reduciug maximum dis-
tortion at the expense of continuity of the map. Figures 4.10.1, 4.10.2, und 4.10,3 show
interrupted Sinusoidal Mollwelde, and Parabolic projections, respectively,

Certain meridians are chosen as reference meridians, which are stroight lines, The
equator is ulso a straight line. Then other meridians are chosen where the breaks will oceur,
Note that it Is not necessary for reference meridian to appear In both hemispheres. One can
choose a half meridian in either hemisphere, .

The purallels are spaced in the same manner as in the regular Sinusoldal, Mollweide
or Purabolic projections. The difference comes in the method of handling the spacing of the
merldinns, Each reference meridian becomes the axis of the coordinate system, and the
abacissu Is marked, east or west, until 4 break is reached. Then, one goues to the next refer-
ence merldian, and repeats the process.

This procedure has been applied to the Sinusoidul, Mollweide, and Parabolic projections,
I each case, the respective plotting equations of sections 4.6, 4.7, und 4.8 have been used,

The grids which result from this method are rather exotie in appearunce. Distortion,
since 1t is greatest at the furthest longitude from the central meridian, is always significantly
decreased, These maps are generally used as statisticul representations, so the breaks cannot
ereate undue hardshdps. The breaks are chosen to appenr in reglons of little interest in order
to better represent reglons of greater interest,

e
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4.11 Werner's Projection [2].,]20]

Werner's projection is obtained from Bonne's projection by letting ¢o = 90°. From
(4.4.5), we huve

p= —f¢ Rd¢

2
= R(n/2=-9). ' 4.11.1)
From (4.4.8), ufter substituting (4.11.1)

0 = AR coy ¢
R(n/2~¢)

= heosg .

[ the origin is chosen at the pole, the Cartesiun plotting equations become

X o= R(n/2=¢)slin (%‘é’%%)

. (4.11.3)

y = -R(n2 ~ ) con (;"F“l}%)

The grid corresponding to (4.1 1.3) s In Figure 4,111, The only stealght line in this cardiolkd
shaped projection is the central meridian, Note that distortion becomes excessive ut the
south pole, and it increased longitude from the central meridiun, The parallels are stifl
concentrie circles, 8 is the sealetuctor,
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4.12.1 Eumorphic Projection |22

The Eumorphic projection in Figure 4.12,1 is essentially an arithmetic mean between
the sinusoidul and Mollweide projectives. This will be the first projection in which one
will be unuble to obluln general x- und y-plotting coordinutes,

The projection s obtained For euch longitude by summing the distunce along the
central merldian to o given parallel for the sinusoidul and Mollweide, and then dividing by 2.
The length of the purallet is then needed, This Is obtained by requiring that the srea be-
tween the equator, the central merddian, the given merldian, und the parallel under con-
stderation be the sume on the Eumotphic as on the Mollwelde or the sinusoldal profection,
This means obtaining comparable ureas on the Mollwelde or the sinusoldal by elther g
plunimeter or integrating a polynomial which approximates the meridian curve, 1t is then
necessiry to obtuin the x-coordinates on the BEumorphic by trinl und error with a planim-
eter, o {Tetng o polynombd curve, ‘This {8 time consuming, and fus not been done in
this report, However, Tuble 4,121 glves the y coordinates for the Fumorphie projection,

Table 4,12.1, Parallel Spacings
on the Eumorphic Prajuction,

¢ y
(Degrens) (Metars)
0 0.000
30 0.647
80 1,081

80 1.490

“"
i
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4.13 Eckert's Projection {22}, [24]

Eckert produced a total of six projections. The one that has received some fame is
Eckert 4, In this projection, the central meridian is half the length of the equator. From
Figure 4.13.1, the equator, parallels, and centrul meridian are stralght lines. The method of
choosing the parallels requires that the other merldians be elliptical curves,

In the projection, the spacing of the parallels decreases with latitude in a manner that
makes this an equal area projection. The derivation is similar to that of the Mollweide.

The urea of a hemisphere I

Ay = 2rR%, “ 4.13.0)

The aren north of the equator on the Eckert projection is, from the Figure 4.1 3,
Ar =+ T @1
Equuting (4.13. 1) und (4.13.2) |
2R = 212 + 1[53
= 12 (2 + ’_;{-) (4.13.3)

The area on the hemisphere below latitude ¢ Iy

Ay = 2nRlsing . (4.13.4)

The corresponding urea on the projection, including u rectangle two sectors, and two triungles,
s

s
rsingd creos 0+ 20

[ Y )

Ay = 2rersin0 +

= 1 2(QAsin 0+sin0con ) +0), 4135
Equating (4.13.4yund (4.13.%)

rRIsing = r2(28ln 0 +sin 0 cos 0 4 0, (4.13.0)

Fguate (13,3 and (4.13,0) to obtain a relution hetween ¢ and 1.

iy
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2 <2 + -!,L)sln ¢ =r2(2sin0 +sindcos0+0)

¥

(2 +—g-)sin¢=2smo +sinBeosl + 0. 4.13.7)

Again, we have an ugly transcendental equation to be solved for 0 us u function of ¢,
And, agaln, the Newton-Raphson method will produce a result [ 14]. Armed with this, the
Carteslan plotting coordinate are

X = S+ R(l +cos )A=1)

n (4.13.8)
y=8+R* Fsino

|
|
|
|
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Chapter §
CONFORMAL PROJECTIONS

Conformal projections are those projections which locally maintain the shape of an
ared on the carth during the transformution to the mapping surfuce. One important uspect
of this Is that the orthogonal system of purallels and merldions on the spheroid appeur as un
orthogonal system on the map,

The process of conformul trunsformation may be uecomplished in two ways, One of
the ways i8 to trunsform from the spherold onto a fictitious conformal sphere, and then
upply the simpler sphericul formulus to transform from the conformal sphere to the plane,
cone, ot cylindor. The second way is to sccomplish a brute force trunsformation from the
spherold directly to the mapping surfuce, Both of these approuches will be considered, The
results from either approach will be similur,

The conformal projections to be consldered are the Mercator, the Lumbert conformal,
and the stereographic, Three variations of the Mercutor will be discussed: the regular, the
oblique, and the trunsverse, Lambert conformal projections will be represented by one. and
two standurd puarallel cases, The polur, equatorlul, and oblique versions of the stercographic
will be derived,

Albof the conformul projections will be churacterized by the conformal relution fntro-
duced In Section 2.6, The fundamental quantities of the fgure of the sartheund the mapping
sutfce will be related by

[

. B2 o By L,
¢

In this equation, the capital fetters refer to the mapping surfoce, and the small letters, to the
cliosen Tgure of the curth, Since we will be dewling with orthogonal systems, = 14= 0,

5.0 The Conformal Sphere [20], 1231, | 24|

The process of producting a conlormal mapping of the earth onto o developable surfuee
I8 alded by the fuet that a suceession of contormal trunsformations yields o conformal image
of the otginal area on the tnal surfaee. 1t will be shown that {t i possible to project the
sphetoled conformally onto a sphere of rudius Ry = /R Ry, and maintain the quality of
confarmality tor the subsequent transformution to the developable surfuee,

163
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If one goes through the expansions of this double transformatlon, and then goes
through the expansions for the direct transformation, he will observe that the results are
simllar, but not exuct. The two approuches differ in higher order terms. Since these higher
ordet terms contain powers of the eccentricity, e, the numerical difference is negligible, The
process of expunsion will not be attempted in this volume, The equations in this section
will be derived in a form convenient for evaluation on n computer, and will be incorporated
in the general mapping computer program of' Appendix A.l.

Once the trunsformation from the spheroidal earth to the conformal sphere is com-

plete, the formulas of trigonometry cun be applied to trunsform from the conformal sphere
to the mapping surface, ‘

From (2.3.185), the tirst fundamental form of the spheroid is
(ds)? = R2 (dg)* + R2cos? g (dN)?
with fundamental quantities
¢ = R
g = R2costo, (5.1.1)
The first fundamental form of the sphere is, from (2.3.14)
(ds)? = RI(dP)? + R} cos2 b (dN)? .
with fundamental quantities

E' = R}
" ' (5.‘;2)
G' = R? cos?

For this conformal sphere, the conformal latitude and longitude are detined to be &, and
Acrespectively, The radius of the conformal sphere i R,

The conditions are applied that the contormal spherieal latitude Is o Tunction of sphe-

roldal geodetie latitude only, und conformal longltude is a Hnear function of spheroldal
longltude, Mathematically, this is stated us

b = ()

A= N4y

(5.1.3)

P
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Applying the fundamental transformution mutrix (2.7.11) to (5.1.2) and (5.1.3)

2
, o
o= (—) R?
o : l 5.1.4)

G = c2R? cos?¢ )

The condition for conformality, as given by (2.8.2), and applied to the two correspond-
ing orthogonal parametric systems Is

.G,
=g m (5.1.5)

where m? {8 a constant,

The fundamental transformation matrix (2.7.11) gives, with the aid of (5.1.5)

2 2

dOVRU\ o, (AAVBA e |,
°"(a¢ a}\)a +(a¢)(gk>c (5.1,6)
2 2
G = (—%‘{) I+ (-g—%) Vo= gm?
From (5.1.3)
20 L,
'(ﬂ a¢ 0‘ y (5'1-7)

Substitute (5.1.7) into (5.1.6).

I = (%:—:) o= em?
' {5.1.8)
and

G = (:,)Q) G o= ogm?

Write (5.1.8) us a propottion to elimbnate m2. This s u form of the condition of conformality.

h-‘&lhmv‘l'\u -vh;,:M
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1

(@9 (.aAf
ad/ ., _\DN
.6.-. l‘Q‘ g

G, (5.1.9)

Substitute (5.1.1), (5.1.2), and the partinl dervative of {5.1.3) into (5.1.9).

2 2R? cos

¢ ' ' SARE A o

RZ \9¢ RE cos? ¢ t

Convert (5.1.10) into an ordinary differential equation, and take the square root. Then, by i
sepurating the vuriables, ?_z;
i

db Ry i

cos = K Tosg 90 (.11 i

y

Substitute (3.2.9) and (3.2.16) into (5,1.11) to oblain

dd
cos b d¢ 2
i
K
S

el =¢)
(1 =c2sin2g) cosg

The solution of this diftferential equation is
, ¢/2
In tun (Z + f.l.;>= ¢ Intun (g + ?)(: * t :::::j:) + K. (5.1
The vonstant K is removed by requiring that © and ¢ are coincidently equal to zero.
Thus, from (8.1,12)

‘ UFAN

AN L 7 ¢\/1 - esing ‘.
4 ‘ ; i : S L3
tuh (4+ :> n (44- :)<1 +L.,‘.|,‘(',,> (5. 110 p

Note that this integral was encountered bhefore, in Section 3.3, for the Joxodromic curve on
the spheroid.

in arder that A and v coincide at zero, tfrom the second o (81,30, ¢y = 0, and

\
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It remains to find the value of the constant ¢ For the particular transtormation frome
the sphierold to the contormal sphere,

Consider a Taylor's series expansion of the constant m? about the origin. By origin we

" mean in this development, the latitude selected as the origin of the map. Recall that the

partlal derivatives of m? with respect to X are zero. Then,

= m} + (aé‘; \ Ap + «l;(a(:” (AQR + ..., (5.1.15)
{

Also from (5.1.10)

uR o 'l) :
m o= - R on g (5.1.10)

At the origin of the map, mg = 1, by definltion of the contormal projection. This
aspect of map projections will be oxplorcd in Cnapter 7 on the theory ul distortion. Con-
sidering (5.1.6) at the origin,

L R L()\ q’()

My = L= Rp L‘UH (/)()

(511N

Let

om _ 0 [ cosd || - ’
(,)¢ - LRc {ﬂ(b [Rl) LU\‘I)]} 0 (S-I-IH’

Taking the derivative of the portion of (5.1.6) in brackets, and substititing (3,297 in this

sintd ol cos e » ‘)Rl‘\l
TR, cosd 06 : , ARy sing + cosd e ) {
peOSP Db (R, cos ) dyi
oth _oeos b CON e s g cos ¢ l

sin & =

7‘/ Ry con b =Ry sing

(1 edsind gt

1

cos b sin \ avd cos?
COR AT
Rl‘ COS th (l

’ 179
Cedsint ¢

LRI e e
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_ cos b sin ¢ [u(l - ¢?sin ¢) ~ ae? cos? \b-J

- Ry cos ¢ {1+ ¢? sin? ¢)/?
c08 lb'sl'n - 2(1 - ¢? : ‘
‘. * ¢ U-ed |, (5.1,19)
4 pLOSE | (] =gt gin2 )2
Substitute (3.2.16) into (5.1.19), X
; o Ry sin ¢ "
! sin & Y cos 'l;":‘-(");b ' (5.1.20)
o _ , E x
\ t Evaluate (5.1,20) at the origin of the map.
: 7 o | Rpo sin ¢y
-l ] et bt bttty
sin g <a¢)o = «ps bq "5 Go% B (5.1.21)
Substitute (5.1, 10)into (5.1.21).
sintbo ¢0s Pg ¢Ry - 08 Py Ryyg tin o
Rpo cos o R0 cos o
singg = vsindyg . (5.1.22
The next step is to obtain the second purtial derivative of m, and equate this to zero. t
This is accomplished by using (5.1.23) to obtain s
i
/Rp() B
tun ¢p = ]/R tan &y . (5.1.23 ;
m ‘
From (5.1.2) [
sin !
s g = - c"b'” (5.1.24) i
!
poo .2 .- ‘r
sil
cos by = ‘/1 Nt (5.1.25) '
o2

Substitute (5.1.2d)y and (5.1.25) into (5.1.23). Also, substitute (3. 2.9 and (3.2.16). l
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]
— sin ¢
sin ¢y _ ,./B_p_q sindg (1 -2 sin? gg)1 /2 . e
cos dg l’ Rimo vos dq al] = e?) l/’:“;m;
(1= o02sin2¢g)3/? ¢
1 __f = eZsind gy 1
COs ¢ | - e? \/a“:'m
L gV moisinide 1
cos? ¢y | = g2 ¢? = sin? ¢y
- 52)(e2 = gin2
cos? gy = (1 = e?)(c? —sin? ¢g)

| = elsing
cos2 ¢ (1 = e2 sin? ) = (1 = e2)(c? ~ sin? gy)
cos?dp =~ o? costdpsin?gg = (1 -e2)e? = sin2gy + e? sin? gy
cos? @y + sin? gy = ¢? sin? oo (1 + cos? pg) = ¢2(1 ~e?)
b= e2(1 = cos2 o)) +cosd o) = ¢2(1 =)
1+ e2(eosdgg = 1) = ¢2(1=¢2)

" = 02 4 ¢? cost gy
g e b e o—— ot
1 -

¢ cosd oy 112
Vo= ‘ [ TR A
I =l

The radius of the contormul sphere can be found from (5.1.23)

sin oy ~ / Rpl) sin ‘l’()
COS Py Rmn costh,

Irom (5.1.24)

(5.1.20

(5.1.27

v
1
1
i
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csindg _ /R;;)- sin & o _cosgy  Rpo (5.1.38)
¢cos ¢ V Rmo cos ;FO" © cos By lim() ‘ .

Ellminate ¢ between (5.1.17) and (5.1.28),

|
l

R: = +/RpoRpo (5.2.29)

Equations (5,1.13), (5.1.14), and (5.1.26) can be used to convert from the spheroidal
earth to a conformally equivalent sphere, with a radius given by equation (5.1.29). Once
this is done, the conformul projection from the conformal sphere is relatively casy. Tuble
5.1.1 gives the conformal latitude In terms of geodetle latitude for the WGS-72 ellipsold
when @y is urbitrarily chosen as 0°, Note that, unlike the development for suthulic latitude,
the conformal sphere depends on a particular cholee of origin, ¢g. Note ulso thut (5.1.29),
or the radius of the contformal sphere {s also dependent on this origin, Thus, the radius of
the conformul sphere contracts or expunds as the choice of the orgin dictates,

Table 8.1.1. Conformal Latitude
a1 & Function of Gendetic Latitude
tor the WGS-72 Spheroid.

Geodetic Conformul
Latitude Latitude

0.0000 --,0000

6.0000 6.6060
10.0000 13.0117
16.0000 16,6216
20.0000 20,0362
26,0000 32,6671
30.0000 39,0866
36.0000 46,224
40.0000 52,1389
46,0000 58.7267
B0.0000 86,2833
65.0000 71.8719
60.0000 78,4818
66.0000 85.0832

¢o = 0
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5.2 Mercator Projection |8}, |20}, |22], 123}, |24]

The Mercator projection, devised in 1569 by Gerhard Kramer, whose Lutin name was
Mercator, is the clossle of modern mup projections, 1t was derived as an ald to navigation in
the Initial days of the age of oceun exploraticn, and hus continued its utility through the
age of spuce exploration, The regular, or equatorial, Mercator projection, with its areas of
lesser distortion north and south of the equator, and including the major marithme trade
routes was and is a natural vehicle for ocean navigation, Transverse Mercator projections,
with the Lumbert conformal, ure the buckbone of the quadrungle system tfor topographic
surveying. Oblique Mercator projections, with the line of zero distortion nlong the nominal
satellite re-entry footprint have been used in the recavery charts for the Mercury, Gemini,
and Apollo inissions.

’

All three of the Mercator variutions, the regular, the oblique, and the transverse, .will
be considered in terms of a double transformation, that is from the spheroid to the con-
Formal sphere, amd then to the mapping surtace, and the equatorind in terms of u divect trans-
formation of the spheroid to the map.

The Mercator projection entuils, in both upprouches, 4 transformation from the sphe-
roid to a eylinder. The Mercutor cun be considered in teems of & semi-graphical teehnique.
One cun, with extreme patieilee, construct o Morcator projection by a geuphical means. In
fuct, Mercutor, before the development of caleulus, did just that, The objection to this is
that there is a varying projection point, Caleulations are needed to locate the point ol
emunation of the projection ray. This is shown in Figure 5.2, 1. For each and every latitude,
a ditferent point is needed as the orgln of an intorfor ray which Interseet both the surlaee
of the spheroid (or conformal sphere) and the developable surfuce, the eviinder. Thus, the
reasonable approach is to use u mathematical method,

The regular Mercator projection will be developed timst for the conformal sphere. Then,
the rotation formulas of Section 2,10 will be applied to produce the obligue wd transverse

CURCS,

For the regular Mercator projection, let the Cartesiun mapping coordinates be given by
the functional relations,

X = X(A)
y = y(m |
In particular, the fiest function is taken as o linear combination

XAl =) (5.0
where ads the radius of the contormal sphere, and S is the scale fuctor,
The elemenital forms ot the second of (5.2, 1) and (5.2, ) e

dx = aS JA

Wy N
dy = m dip (8.0 40

¥
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Figure 8.2,1, The varying projection point

of the equatorisl Mercator projection
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The first fundumentul form of the plane s

(ds)? = (dy?) + (dx)?.

Substitute (5.2.3) into (5.2.4).
d 2
@) = (§5) dot + w2srcan?,

The first fundamental quantities of (5.2.5) are
2
: = L‘Z)

F o= (d ;

u?s§?

i

G
The first fundamental form of the conformal sphere Is
(ds) = 02 (dg)? + u? cos?e (UN)?.
The first fundamental quantities, from (5.2.7), are

¢ o= gl

B= adcond g

For the orthogonal systems of the plane and the conformal sphere, the relation of

contormality, from (2.8.2) s
kG
§
Substituting (5.2.0) and (5. 2.8) into (5, 2.9,

)

tlyj
als? (llff’
0? cost o u?

dy o as
do CON g

\S h
y =i / e as In tan (7{ + i)+ ¢

cos ¢
In (5.2,10) choose ¢such that y ~ O when g0, Then, e = 0.

'

(5.2.4)

(5.2.5)

(5.2.06)

(5.2.8)

1
(5.2.9) .
!::
:
i
L
I
|
(5.2.11

[

f

.
. hu..—.._i.» '...,t,,/.:"aﬂ‘
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P ; T, ¢ n
n y = 48 In tan it3) (5.2.1D

Equutions (5,2.2) and (5.2.11) provide the trunsformution from the conformal sphere
to the cylinder, or the map. The oblique and transverse Mercator projections will now be
galned from the equatorinl Mercator by utilization of the rotation formulas of Section 2.10.
Substitute (2.10.4) und (2.10,5) into (5,.2.2) and (5,2,11) to obtain the oblique Mercator

projection, .
X = uSua
. { sin (A = Ap) 591
= uS tan cos dp tan ¢ — sindp cos (N =4 (5212
where @y Is the lutitude, und A, s the longitude of the pole of the reference plane.
y = S In tun (-z- + —%)
= 0, (Lt sinh
3y In (1 =din h) (5.2.13)
08 L+ sindsing, + coxd cos g, cos (A =RAp)
y = !3. In R T e A e " - . (5.2‘14)
2 I = singsing, —= cosdcosdy cos (A= \y)

The transverse Mercator projection is obtatned us u specinl case of the oblique Mercator
projection by letting o =0 In (5.2.12) and (5.2.14).

;
_— “:\qnmw\,,)l 5215, .

X o= aStanTl | e o Jeen ks E
_ tan ¢ | 3

as 14 cos ¢ cos (A k,,)‘ . A
A R N e W (52100 o

Figutes §.2.2, §.2.3, und 52,6 are specimens ol the equutorial, obligue, and transverse
Mercutor projections, respectively, Plotting tables for these projections ure given in Tubles
520, 8.2.2, and 5.2.3, respectively. Note that, in the equatorial Mercator, the parallels and
meridians are stroight lnes, intersecting ot tight angles. This means that the convergency of
the meridiang does not aceur, and distortion becomes excessive in u poleward direction, In
fuet, the point of the pole is approaching intinity. Thus, the equatorial projection is useless
at extremely high and low latitudes, In the transverse Mercator, the central imerldinn and
the cquator are the only straight lines, However, curved mertdians and puareillels intersect
orthogonally. For the obligue Merentor, there are no straight meridians or parallels. How-
ever, orthogonality is present.

(19,4 BR7AY 1PtKoe
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Figure 6.2.3, Oblique Mercator projection
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Figure 8.2.4. Trensverse Marcstor projection
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S eSSt

Table 8.2.1. Equatorial Meroator Projsation,

‘. Regular Meraator
3 Latitude® Longitude* xoo yor
i 0,0000 040000 04000 " =, 000
: 0,0000 30,0000 . 3y 360 - 000
] 040000 60,0000 : 64679 -. 0C0
; 0,0000 90,0000 : 10,019 -, 000
0.0000 120.0000 - 13.359 -,000
0.0000 150,0000 16.698 -, 000
0,0000 18040000 20,038 -4 000
30,0000 040000 0,000 2,482
-30,0000 30,0000 3,360 3,462
30,0000 60,0000 beu?9 3,482
30,0000 90,0000 10,049 3,482
30,0000 120.0000 13.359 3,482
30,0000 150,0000 164698 B 4R2
3040000 180,0000 20,038 I, L2
60,0000 0.0000 0+000 84363
6040000 30,0000 3. 360 8.3R3
60,0000 60,0000 04679 2,303
60,0000 90,0000 10,019 8,363
60,0000 120.,0000 13,359 8,T¢ 1
60,0000 150.0000 16,698 8.363
00,0000 180,0000 20,038 8.363 3
]
oo = W’ *Dagres '
Ao = O **Meters

e mewimEE . i L




Latituce*
=30,0000
-30,0000
-30,0000
«-30,0000
-30,0000
=30,0000
«-30,0000
=15,0000
=15404000
'1500000
«15,0000
«1540000
'1500000
«415,0000

g.0000
0,0000
0,0000
QsulUD
0.,0000
0,0000
0.,0000
18,0000
15,0000
15,0000
1%,0000
15.0000
15,0000
15,0000

30,0000

30.0000

30,0000

30,0000

30,0000

30,0000

30,0000

o = 48°
Ao = 0°

*Dagrees
**Meatens

Table 8.2,2. Oblique Mercator Projection.

Longitude*

0.0000
15,0000
30.0000
45,0000
60,0000
7540000
90,0000

0,0000
1540000
30,0000
L5,0000
60,0000
75,0000
90,0001

0,0000
15,0000
30.0000
4540000
60,0000
78.0000
9u«0000

0.,0000
1540000
30,0000
45,0000
60,0000
75,0000
90,0000

0.0000
15,0000
30,0000
L5.,0000
60,0000
75,0000
90,0000
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Meroator Oblique Case

X4 #
0,000
10485
24905
“s 219
Seul?
6.518
T7.547
0.000
1,839
3.556
5,090
Gotle?
Te671L
84825
0.000
2.310
e 367
64093
by -1%4
8.825

10,019
0.000
3,081
S.5u1
7.380
8,825

10,081
11.211%
0,000
4,819
7567
9.496

10,4621
11,480

12,491

Yoo
1.689
14547
1,139

«508
- 302

'10260

=2.367
3,503
3,309
2767
1,974
1,019
=e 040

‘101'1
5,621
5s3%24
LeBSLb
3.503
24387
1.180
'nﬂﬁo
a.b00
?.849
6879
G.128%
3.716
2402
1.18%

12,932

11.375
8.886
6,776
5,054
3.007
?2.357




Catitude®
3U,0000
30,0000
30,0000
30,0000
30,0000
30,0000
30,0000
45,0000
45,0000
45,0000
45,0000
4540000
450000
45,0000
60,0000
00,0000
60,0000
60,0000
60,0000
60,0000
60,0000
7540000
75,0000
75.0000
7540000
75,0000
75,0000
75,0000
90,0000
90,0000
90,0000
90,0004
90.0000
90.0000
90,0000

=0
N=0

*Degrens
**Meters

Table 6.2.3. Transverse Meroator Projection.

Longitude®
0.0000
i%.0000
30,0000
4540000
¢0,0000
75,0000
90,0000
0.0000
15,0000
30,0000
45,0000
€0.,0000
75,0000
90.0000
0.,0000
15,0000
30,0000
4540000
60,0000
75,0000
90.0000
0,0000
15,0000
30,0000
45,0000
€0.0000
75,0000
$0.,0000
0.,0000
15,0000
30,0000
45,0000
60,0000
75,0000
90,0000

180

Maroator Transverse Case

X

0,000
2.6848
4e552
5:652
be268
€.583%
bet?79
0,000
1.018
2.957
3,926
o552
bed399
5.009
0,000
0946
1,792
20472
24357
3.245
3.339
0,000
LY
1Y)
1,194
Lekbb
1,615
1,670
"0.038
0,037
0,037
‘0.037
0,037
0,037
0.037

yoo
8,400
-Pe?in
6,206
=Le5LE
'2.957
=4,4L54

+000
=5.,621

=5,326 -

b, 5006
«2,503
»2.387
=4.,140
+ 000
«3,%¥03
3,360
«2.9%57
‘20357
1,629
-,830
0400
=1,689
-1,629
'10“5“
'10180
-, 830
=,h?8
« 000
+ 000
«+ 000
« 000
« 000
« 000
+ 000
-, 0(0

g &
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In Figure 5.2.2, the loxodrome (or rhumbline) and the great circle ure portrayed on a
equatorial Mercator projection. The loxodrome is a line which intersects successive meridians
at the same azimuth, or bearing angle. On the Mercator projection the loxodrome is o
straight line, and the great circle (or geodesic) is a curved line. The gnomonic projection of
Section 6.1 has the reverse of this situation. As will be seen, the gnomonic projection has
great circles as struight lines, and the loxodromes are curved lines. Thus, by using the ']
Mercator and the gnomonic projections together, one can build a series of bearings which |
will approximate, piecewise, a great circle route. This combines ease of navigation with an
approximation to the shortest distance between two arbitrary points. This method is used
for both maritime and aerial navigation. ig

The Mercator projection, as mentioned above, can also be derived by a direct trans-
formation from the spheroid to the plotting surface. This will now be done to compare the
labor in these two approuches.

From (3.3.1), an element of distance along a paraliel of the spheroid is

a cos ¢ dA
(l —ez s‘n2¢)“2

e T

The infinitesimal distance along the parallel of the map is ud . Thus, the scale along the
patallel is

dp  __cos9
., i (5.2.17)

From (3.2.16), un element of distance along the meridian is given by

a(l —e’)ddb_
(1 - e2 sin2 ¢)¥/2

(5.2.18)

Let dy be the element of distance on the meridian of the map which represents the
elemental distance dm along the meridianal ellipse. The ratio of dm to dy must equal the
scale along the parallel, if conformality is to be maintained. Thus, from (5.2.17) and
(5.2.18).

dm _ _al-el)dp _ cos¢
& gyl -e2sin2¢)? (1 -edsin? g)

L al-e?)dp '
(1 =e?sin?g) cos o

(5.2.19)

The distance of the parallel of latitude, as measured along a ineridian, from the equator,
is found by integrating (5.2.19). This is done by expanding the integral in partial fractions.
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¢ a(l-et)d¢ .
y .,; (1 =2 5sin2 ¢) cos ¢

® 49 o [® -ecos¢do ¢ ecos¢do
2 {f &ﬂ*‘i.’; 'l_:_esln¢-%J; T +esing

¢ do "“¢d¢__ ¢.......: ¢d¢}
J‘ 'ej; ¢ cos ;L‘ ¢ o8

1 ~esing 1 -ecaing

TTVETTT SRR R NI SIS ——
B
=
—
<
=
3
.
ST ]
+
h: 3
e
» M

- f%ﬁg-f%’;{%?

'f sin {—+%)

{

+& J‘" =ccosddp _ ¢ "¢ ¢ vos ¢ do
i 2 [ = esing 2 5 T+ enne

<
"

a{ In [sln (5+ %)]- In [°°' (5 + %)]

+§— In(l —esing) - % In (1 +eain¢):|}
a { In [tun (% + %—)j) +-°2- InK-r—-—r—l : ::T:)
e/2
o [un (5 + 4) (H-sane) } (5220

Thus, we have in (5.2.20) the same results as (5.2.14) if e is set equal to zero.

The distance along the equator can be found from the integral

A
x-af dA
()}

= gA\. (5.2.20H)
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The amount of labor in either the direct or the indirect method of transformation is
significant. The amount of computer time consumed in evaluating either set of equations
is similar. The rotations of Section 2,10 can be applied to (5.2.20) and (5.2.21) to obtain
approximations to the oblique and transverse Mercator projections.

$.3 Lambert Conformal [20], [23]

The Lambert conformal projection is a projection from the apheroidal eurth onto a
cone, which serves as the develoyable surface. This can be done rather simply by trans-
forming from the conformal sphere to the cone. The transformation can also be accom-
plished directly from the spheroid to the cone. This second approach will be followed in
this section for Lambert conformal projections with one and two standard parallels. Then,
th; eccentricity is set equal to zero to accommodute transformations from the conformal
sphere,

For the Lambert conformal projection with one standard parallel, the conical mapping
surface Is tangent to the spheroid at this standard paratlel. The axis of the cone coincides
with the rotation, or polar axis of the earth, The meridians are straight lines converging at
the apex of the cone. One of these meridians is arbitrarily chosen as the central meridian,
Ao. The parallels are a set of concentric circles,

The polar coordinates of a point P are p und 8. The Cartesian coordinates of this same

point are
X®pging-$
(5.3.1)

y =™ (po—~pcosd)S

where pg is the radius vector from the apex of the cone to the circle of tangency.

Agaln, the elemental distance on the spheroid is found from the first fundamental form

(ds)? = R (d¢)? + R cos?¢ (dN)?

e = R
. (5.3.2)
g = R} cos?

with fundamental quantities

On the conical surfuce, the first fundamental form is
(ds)? = (dpP® + p2(d0)?

with fundamental quantities
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E' =1
G' = p? } ‘
Two conditions will be imposed.. One is that
p = p(
and the second is that
0= c A+ ¢y,

From (5.3.5)
a6

‘ -—-cli

A

From the fundamental transforrmation matrix, (2.7.11)

Substitute (5.3.3) into (5.3.7)

Substitute (5.3.6) into the second of (5.3.8).

G = fp?.

From the condition of conformality (8.1.9) for two orthogonal systems.

2 2

...... AN —
[

(5.3.3)

(5.3.4)

(5.3.%)

(5.3.6)

(5.3.7

(5.3.8)

(5.3.9

(5.3.10)
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Substitute (5.3.2), (5.3.3), and (5.3.6) into (5.3.10),

('g'e'): 102
b L .
R,’, = Rg oy m?, 5.3.1D

Take the square root of (5.3.11), and convert the result to an ordinary differential
equation "

do - - Rp ¢y
P Rp cos ¢ de o (5.3.12)

The minus sign is chosen since p decreases as ¢ increases,

Equation (5.3.12) can be integrated by the method of Section $.2 for the Mercator

projection to obtain
1 - esin 02
Inp m =¢yIn < tan (-E +%)( T osin )

+1n ¢y

/12|
+
o= {m 5-9) (—{—;——:—}{;‘}%5 } : - (8.3.13)
LN
The constants ¢, , ¢, and c¢3 must be evaluated now. First, frcm (5.3.5), it is required

that 8 m 0, when A =0, Thus, ¢ =0,

Next, consider ¢3. At the origin of the Cartesian coordinate system of the map (¢q,
Ao), the cone is tangent to the spheroid. Thus, similar to the development of Section 1.6

po = Rpo cot ¢0 ' (5-3n14)

Evaluate (5.3.13) at ¢y, and equate to (5.3.14).

12y
/ 0\ /1 + esingp\
" ) .2
Rpo cot ¢o ca{“"\4 2)(|-elln¢o)}

Rpo cot
¢y po ol &0 . (5.3.15)

{tan (% - g)l({__:_g_:_:_:_%ﬁ)m}c.

PRV

B e
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i Finally, from (5.3.11)
T (5.3.16)

M= Ry cosd '

At the origin, as will be treated in detail in Chapter 7, mig = 1. This implies that (3m/3¢), = 0.
Differentiate ($.3.4), and evaluate this at the origin.

om ap 1 lelno_
35"°’()pcos Te 0

e D e

% . RE cos? ¢
; - _a_g) c1poRmo
( o c;(“o * Ry eorg = O (5.3.17)
3 From (5.3.12)
| ._a_e) _ 100 Rmo
(a% * "Rpocor g | (5.3.18) o
Substitute (5.3.18) into (5.3.17) '
!
_ cfooRug + S120Rmo singg _ o
Ryo cos ¢ Ryo co8 ¢
¢ =sngg. - (5.3.19)

Substitute (5.3.19), and (5.3.14), into (5.3.15)

_— Po
C3 "n&‘ (5-3-20)

{tnn (f - %o) (%';':-%2%%5”}

Substitute (5.3.20) into (5.3.13).

{ |+l i¢n/2 tindo
" _ ¢ sin “
gy 4 ten (§ %)(r:e—.m) b (5.3.21) ‘
[ l5-9) (e

Substitute (5.3.19) into (5.3.5), and recall that ¢; = 0,
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0 = Asingg . - (5.3.22)
Recall from Section 1.6 that sin ¢¢ is the constant of the cone,
Equations (5.3.21) and (5.3.22), in conjunction with (5.3.1) and (5.3.14) give the i

plotting equations in Cartesian coordinates. Table 5.3.1 is a plotting table for the Lambert 4
conformal projection with one standard parallel based on an origin of ¢9 = 45°, and \g = 0°, 1

The Lambert conformal projection with one standard parallel may be converted to a
form for the transformation from the conformal aphere by letting ¢ = 0 in (5.3.14) and

(53.21), ’
Po = acotéy (5.3.23)
‘ sindy
-9 :
p = ppd——noll (5:3.24) |

tan ({-- %’)

Equations (5.3.23) and (5.3.24) are then used in conjunction with (5.3.1) to produce the ’
plotting equations. _ '

R A e o e e e

The next step will be to consider the -Lambert conformal projection with two standard
parallels. This projection has had considerable utility as aircraft navigation charts, and has
been used for star charts by the U.S. Alr Force. Again, the meridians are straight lines
radiating from the apex of the cone, and the parallels of latitude are concentric circles.

L N e il e T
e

Let the two standard parallels be chosen as ¢; and ¢4, where ¢;3 > ¢1. Then, from
(5.3.16) and (5.3.19)

. sin ¢o
| m = f Rp1 cos ¢
) (5.3.25)
! sin ¢3
. = p sz cos 92

i pr  Rprcosdy
1 7 m . (5.3.26)




189

1
)
y Table 8.3.1. Lambert Conformal Projection,
One Standard Parallel.
Lambert Conformal, One Standard Parallel
3 Latitude* Longitude* Xre Xee
] 0,0000 0.,0000 - 0.040 -®,L36
: 0.0000 15.0000 2.186 =5.2°3
. 0.,00040 30.0000 4e 297 =L,601
: 0.0000 45.0000 é.,261 «3,704
A 0.0000 60,0UQ00 8.0114 -2,377
g 0.0000 750000 o838 -y7E2
! 0.0000 90.0000 10,640 1,116
b: 15.0000 0.04000 0,000 «3.470
% 15,0000 15,0000 1.815 -3,302
i 15,0000 30,0000 3:567 2,802
3 12,0000 «5.0000 5.198 -1.988
b, 15,0000 60,0000 6e0651 =,888
. 15,0000 75.0000 Ted?7?7 s 60
i 15,0000 90,0000 8¢3306 2,011
3 30.0000 0.0000 0.000 =1,648
- 30,0000 15,0000 1,486 «1,545
" 30,0000 30,0000 2¢921 =1.136
. 30,0000 45,0000 42506 - b70
i 30,0000 6040000 Selbls6 o431
;! 30,0000 75.0000 - YY) 1,635
W 30,0000 90.0000 7.232 2.80%
" 45,0000 0.0000 0,000 + 000
g 45,0000 15,0000 1,178 109
& 45.0000 30,0000 2.312 LT3
4 450000 «5.0000 3+309 + 960
R #5.0000 60,0000 be310 1,673
- 45,0000 75,0000 %5.105 24567
. 440000 90.0000 5. 724 3,552
L 60,0000 0.0000 g.000 1,600
| 60,0000 15.0000 o865 1.770
1 60,0000 30,0000 1.700 2.008
| 60,0000 45.0000 2?7 2,396
| 60,0000 60,0000 5170 2.920
: 60,0000 7E.0000 34784 3.563
; 60,0000 90,0000 e 210 v 4,303

¢o = 48° *Dogress
Ao =0 *"Meten '

|
3
1
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From (5.3.21)

tan <%-‘%') (

tingg
I + esing\
1 = esin ¢1)

N

Al

n_ 1)1+ esinm)
Rpi cos ¢y o tan (4 2)(

. e/2
n_ % 1 + esing,
o (59 (Hopme)

(5.3.27)

1 = esin¢;

o2 ingo

1 = esing,

Rpa cos ¢

, e (% - %) (Lt osn ¢z)""

A

1 = esin ¢;

!
w(m_ l+usin¢|°
<Rp| cos ¢1> ) tan (T T) (i = esin dh)
n = singp In

i;; Cos @)

¢/2
m _ 92\ (1 * esingy
“‘"(Z 2)(l-esin¢:>

RE cos
ln( 1 ﬂ)

Rp2 cos ¢

sin¢p =

L
tan (4

X (L:..e_sm_?;l>m

7)) \T="¢sl
seinéy (5.3.28)

tan (g-

- ¢2) (et

So far, the conical surface has been considered to be tangent at the central circle of
parallel. In order to require secancy at ¢, and ¢2, let m =1 in (5.3.25)

prsingo _ pasingg _ {
Rpi cos¢y — Ryz cos 2
py singp = Rpy cos ¢,
(5.3.29)
p2 singg = Ryy cos ¢
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In (5.3.29), sin ¢g , as defined in (5.3.28), applies. From (5.3.21)
1 tingo
T _ 1 + esin ¢1)
tan (4 )(1 = e sin 0,

%1_
) (Lectmeo)”

-
[
=

P

ERE

Substitute (5.3.30) into (5.3.29).

/2 tindo
r_ (l + ¢ sin ¢y
wn (§ - %) (=wme)
) T e {1+ esingot” " et
T _ %0 e sin o\’
tan (Z' T) (1 - esin ¢o)-
Let
Y= Po
/2
r_ %0 1 + esindbo.
tan (7 2)(1 - esln¢o)
- Rpi cos ¢y
| (n _ 9 (l +esingY
sn o tan (§ - ) r——am;)
In a similar manner
- Rpa cos ¢2
’ r ®\[1 + 0811105:.,2.
sin ¢¢ tan ( - —2-)(1-————-——-—_ esln¢z)

The polar equations become

6 = Asjngo

o=y {tun (I—{ - %) (L}: ::: ¢)°/2} '

(5.3.30) k

(5.3.31

(5.3.32)
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Figure 5.3.2 displays u Lambert conformal projection with two standard parallels de-
veloped by using (5.3.32) in conjunction with (5.3.1). Table 5.3.2 gives the plotting coordi-
naies for the two standard parallel case. Notice that the meridians are straight lines, and
the parallels are concentric circles, The area between the standard parallels is smaller than
on the spheroid, and the area beyond the standard parallels is larger.

Equations (5.3.28), (5.3.31) and (5,3.32) can be converted to the transformation from
the conformal sphere by settinge =0,

sin ¢¢ (5.3.33)
Y = = a c08 ¢2 (5.3.34) -
tan ?—l)] |: 1 - M]
singp |t
p = {tan (% - %) (5.3.35)

Equations (5.3.33), (5.3.34), and (5.3.35) are used with (5.3.1) to obtain the plotting
equations.
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Figure 8.3.2. Lambert conformal projection,
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two standard paralieh




Latitude®
15,0000
18,0000
15,0000
15,0000
15,0000
30,0000
30.,u000
30,0000
30,0000
30,0000
L&,0000
L5,0000
45,0000
45,0000
%0000
60,0000
$0,0000
60,0000
60,0000
60,0000
7540000
75,0000
75,0000
75,0000
75,0000

$ = %0°
¢ = 00
Y

Two Standerd Paraliels.
Lambert Conformal, Two Standard Paraliehs
Longitude® Xoe
01,0000 0,000
15,0000 1,909
30,0000 3.752
45,0000 B.463
60,0009 60983
0.0000 0. 000
15,0000 1,439
30,0000 24327
45,0000 4o it?
€0,0000 50262
J.0000 0,000
15,0000 14034
30.0000 2,031
w5.0000 24959
60,0000 3,784
0.0000 0,000
15,0000 669
30,0000 1.315
“5.0000 1,91%
60,0000 2okl
g.0000 0.000
15,0000 329
30,0000 oBu?
«5,0000 1Y
60,0000 1,204
*Degren
**Metert

Table 8.3.2. Lambert Conformal Projection,
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Yoo
-2,%28
=2.34L6
1,814

-y 948
1221
0,000
o135
+ 536
1,169
2.070
2.47%
2.272
2.560
3,029
3,662
hedld)
bhelOl
Ly 380
Lo BPL
5. 094
£,95A
€,989
6,000
6,230
Go b3l
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8.4 Stereographic Projections {20], |22}, [23], |24]

The stereographic projections entail the trunsformation from the spheroid to the plane.
Three variations of the stereographic projection will be derived. These are the polar, the
oblique, and the equatorial,

The stereographic projection may be considered as a purely geometrical projection.
This is illustrated best with the projection from the conformal sphere to the nlane tangent
at the pole. The geometry of this projection is given in Figure 5.4.1.

The plane is tangent to the sphere at the north pole, N, The rays emanate from the
south pole, S. The principle of the stercographic projection requires that the projection
point be diametrically across from the point of tangency. A typical ray from S to a point P
on the earth is transformed to the position P’ on the plane. Thus, the entire projection can
be derived by elementary trigonometry. The same is true for the spheroidal case, only the
geometry {8 considerably more messy.

The approach in this section is mathematical rather than geometrical. This approach
brings out the quality of conformality immediately. We will consider the plane as one of the
limiting forms of the cone, and then apply the equations already derived for the Lambert
conformal projection with one stundard parallel. This is done by letting the parallel of
tangency for the spheroidal case shrink to a polar point of tangency in order to derive the
pol;rzslt)ereosrnplﬁc projection. To this end, let ¢g = 90° in (5.3.19), (5.3.22), (5.3.14), and
(s- . v '

singy = 1 $.4.1)
0= (5.4.2)

Po = Rpo cot ¢o

cot dy (5.4.3)
V1= el

. _acot ¢o tan (-2 - %) ({_t_:%}:_:)elz
\/-1—:—03 tun (%— - %l) (I : :>'/1

and

1 + esing 1

/2 .
- un (5 -4) (509 == (EO8

tan (g + %o)
X unen (5.4.4)
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Pigure 8.4.1, Geometry for the siereographic projection
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In (5.4.4), take the limit of

w5+ %)

tan ¢p
as ¢o appronches 90°,
r , %0
L tan (4 *3 . L (l + tan¢gl_2_) (I - tun’_«pﬂ)
goor  tando domo0r [\~ tando/2/\ 2 tan ¢y/2 ,
(1 +tan go/2)?|
- %_l‘.w [WJ 2. (5.4,5)
Substitute (5.4.5) into (5.4.4).
¢/2 ¢/
a |1~ ¢ . | +esing
e (Fs) (3 ) (Fsine) (5.4.6)
The Cartesian plotting coordinates for the polar stereographic projection are
X = psing ‘4
. (u La i) )
y = =pcos

Equations (5.4.7) are evaluated using (5.4.3) and (5.4.6),

Equation (5.4.7) can be converted into a transformation from the conformul sphere to
the plane by letting ¢ = 0. Then

p-2utnn( -%

Rt

)‘ (5.4.8)

Substitute (5.4.3) and (5.4.8) into (5.4.7).

12| S

- r_
X = 2atan (4

) sin A

y = =23 tan (% - %) cos A

‘ (5.4.9)

Figure 5.4.2 gives an example of the polar stercographic projection. Note that the
meridians are straight lines converging on the pole. and the parallels are concentrie circles
centered on the pole. The spacing between the parallels increases us one goes towards the
cquator, Tuble 5.4.1 gives the plotting coordinates.

S - gy
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f Table 8.4.1. Sterecgraphic Projertion, Poler Cane.

Stereographic Projection, Poler Case
Latitude® Longitude® Xee yeo '
4 8.0000 0.0000 12,744 0. 000 9
3 0.8000 15,0000 12,200 3,204 4
1 8. 0000 300008 11,040 7 [
9 0.0000 49.0000 990 8. 990 1
3 . 040000 6040000 6,387 11,010 3
| 040000 75,0000 3.290 12,200 i
1 00000 9040000 «s 000 124716 |
4 18,0000 0.0000 92772 0.000 :
- 15,0000 150000 9439 2.829 i
g 15,0000 30,0000 WY 44000 X
I 18,0000 45,0000 6,910 $.910 i
: 15.0000 . 60,0000 Lo bbe 8.463 :
). 15,0000 75,0000 2529 k39 !
1 1540000 90,0000 =0 000 9. 772 ,
A 30,0000 0,0000 . 74308 0,000 :
3 ‘ 30,0000 15,0000 Teitl 14904 !
i 3040000 30.0000 G378 3.602 '
] 30,0000 45,0000 $.208 5.208 ‘
2 30,0000 60,0000 3:602 84378 ~
] 3040000 75,0000 1906 7.4 i
3 30408000 90,0000 -4 000 7.388 ‘
3 45,0000 040000 5,291 0,000 ;
[ 4840000 15,0000 S.111 1369 a
4540000 30,0000 Y 2046 -
- 4841000 45,0000 INLY 3.784
. 4940000 60,0000 2,648 4,802
] 48,0000 75,0000 1,369 B. i1
2 840000 . 90,0000 NI B.201
; 60,0000 . 040000 Beu2e 0,000
! . 60,0000 15,0000 3,310 ' 887
68,0000 30,0000 2,967 1.713
.6040000 4940000 20023 2,423
$0,0000 60,0000 1,713 2,967
60,0000 75,0000 887 3,318
: $6,0000 90,0000 -4 000 3,426
] 7840000 0,0000 14608 0.000
> 75,0000 15,0000 10627 Jhrg
- 79,0000 30.0000 1,489 Ny 1Y
] 940000 45,0000 1,491 10191
1 75,0000 60,0000 042 1,459
: 75,0000 75,0008 o436 1,627
75,0000 90,0008 -.000 1,688 ]
90,0000 0,0008 “s000 0. 000 ;
: 99,0000 15,0000 ~e 800 - 00
| 98,0000 30,0008 *4000 -4 008 1
! $8,0000 3, 0008 =e000 NT. -
» 90,0000 60,0000 =¢ 000 «+ 900 ;
) 90,0000 75,0000 -s 000 =, 000 ;
| 90,0008 $0.6000 « 080 -: 000 4

$0=90° Ao =0 ' Degress **Mewn
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The oblique case for the stereogruphic transformation from the conformal sphere to
the plane may be obtained by applying the transformation formulas of Section 2.10. The
latitude and longitude of the pole of the auxiliary coordinate system is ¢p and \p, respec-
tively, Write (5.4.9) us

X = 2atan (3-

)
= -1 tan ({- - j%‘)c:cmm

)

(5.4.10

Then, from Section 2.10.

in A=A
@ = tan { in 3 ~ %) } 411

co8 @p tan @ ~ sin @p cos (A = Ap)

h = sin~! {sin@singy, +cosp cosdp cos(A=Np)}. (5.4.12)

Equations (5.4.10), (5.4.11), and (5.4.12) will then produce a grid such as the one in
Figure §.4.3. The only straight line in this projection is the central meridian, Table 5.4.2
is the plotting tuble for ¢p = 48°,

The equatorial case follows when ¢p = 0° in (S.4.11) and (8.4.12). These equations
simplify to give

sin (= ¥p) }

‘ =l
a = tan { tn ¢

(5.4.13)

h = sin™! {cos ¢ cos (A = Ap)}

Figure 5.4.4 shows an ¢quatorial stereogruphic projection. The equator and central !
meridian are the only straight lines on the grid. The other lines are arcs of ellipses. The
plotting coordinates are in Table 5.4.3.

The stereographic projection can also be derived for a transformation from the con-
formal sphere by u process similur to that introduced for the gnomonic, azimuthal equi-
distant and orthographic projections of Chapter 6. ‘4
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Table 8.4.2, Sterecgraphie Projeation, Oblique Case.

Stereographic Projeetion, Oblique Case i
Latitude® Longitude® " Ree ‘ yeo A
0,0000 0.00U0 d.u00 5,284 " . -
040000 1340000 1,962 8,177 3 L
000000 30,0000 ' 3,956 TN Y | ' Lo
. 040000 4540000 8,013 “4e282 : "
¢ 0,0000 600000 8ed02 -3,332 - - .
- 000000 - 78,0000 10,418 “1,97% LB
: 2,0000 4040000 12. 786 « 000 : : S
v 15,0000 0,0000 0,000 B XY N
' 15,0000 1540000 1,731 “1.300 5
X 16,0000 30,0000 : 3eu72 =2,0%7 i
3 15,0000 «5.0000 230 Ce2.207" A
] 15,0000 6040000 7.000 .1, 32¢ , i
i 18,0000 75,0000 8,753 + 089 ' T
! 15,0000 93,0000 T MY ‘- 1097 . R
i3 30,0000 0.0000 0,000 “1,679 " ' |
] 30,0000 1540000 Lea?0 BT Y1 } - !
3 30,0000 30,0000 2,932 “1,19? N
. 30,0000 48,0000 b 372 807, S )
‘- 30,0000 60+0000 8764 ‘364 : Pl
- 30,0000 75,0000 7.087 CLetub o Y
- 30,0000 30,0000 © deib2 o 3,332 ” |
- #%,0000 0+0000 0,000 » 000 ' j
- 45,0000 13,0000 14?7 o110 : i
- “Ye U000 30,0000 C 233 - sl )
. #3,0000 b5e0000 Jobet 1.008 _ v
3 45,0000 80,0000 “a bl 1.922
{ 45,0000 73,0000 Se347 2,90
3.,0000 90,0000 6013 L. 282
60,0000 0.0000 9. 000 1,679
! 60,0000 15,0000 1] 1.768
3 60,0000 30,0000 10662 2,036
60,0000 43,0000 F Y £ F XYY I
60,0000 60,0000 3,087 3.408
60,0000 75,0000 3,646 3.4908
[ 6040000 90,0400 3.986 “elbp
- 75,0000 0.0000 04000 Youit
- 75,0000 1540000 Y 3,072
; 75,0000 30,0000 +896 3.63%
75,0000 »8.0000 1,288 3.99¢
7540000 60,0000 Lebid 4282 :
75,0000 75.0000 140063 4886 R
7940000 99,0000 1,962 S.477 Co
90,0000 0.0000 0. 000 5,200 Lo
90,0000 14,0000 - 000 Bo20s P
90,0000 30,0000 -, 000 Be200 ;
90,0000 35,0000 - 000 9,204 .
90.0000 60,0000 “, 000 8,204 ¢
90,0000 735.0000 «,000 be204 o
90,0000 90,0000 . 000 5,206 boo !

" [ ] “. xo - o. .m SOMioters - u "%
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Figure 8.4.4. Swreographic projeation, squatorial cse
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Table 8.4.3, Steraographic Projection, Equatorial Casa,
Stetsographic Projection, Equatorial Case

. Latitude* Lonpitude* xoe yes :
¢ 0,G000 0.0000 04009 n.0n0
14 0,0000 18,0000 1579 0,000 13
L 0.0000 35,0000 34418 0,000 : X
: 00000 43449000 Ge284 0,000 £
. 00000 40,0000 Te36> ©0.000 g
) 0.0000 7349000 97410 0,018
s 0eGOUO 9040000 12,757 g.000
§ 15,0000 0.0000 0,000 1.879
i 1440040 15,0000 1e050 1,708
% 15,0000 30.0000 3,359 t.7an
n 15,0000 wh,0000 S.477 1.962
2 15,0000 80,0000 70196 2226
. 1400010 *5,0000 9.022 2ebut
) 1540000 90,0000 12,322 3.302
y 3d.0000 3.,0000 0,000 3.018
30,0000 13,0000 1557 ! Re73
‘ JU40000 30,0000 LISYY 3848
L 30,0000 «5,0000 (YR 1Y) 3.088
] 3040000 60.U008 via?d bykty
. 30,0000 7440000 As217 5,210
1 3040000 3., 0000 114047 £, YT
: #5.0000 0.00C0 0,000 Doty
wEe 0000 1£,0000 Le307 €,%60
4540000 J4.N000 24797 LR
] LE00UY L5,0000 v 282 ¢,013
kb4 0000 €0,000) 5,774 Gahilb
. L5.,0000 75,0000 Te363 7,678
45,3000 97,0000 9.02) 9. 020
60,0000 0.0000 Deud0 7238
60,0000 15,0000 1.1411% Tel®0
$0,04Q040 3040000 2.225 7709
64,0000 «%,0000 3,337 toin2
60,0000 60,0000 hould 8,030 (
60,3000 74,0000 Se bbb Q702 ;
60,0000 90,0000 8. 478 14,047
7L.0000 0.0000 04009 L TN AL
75,0000 15,0000 -1 9.8%7
76.,00u8 11,0000 1348 10,060
75,0000 #5.0000 14973 10,416
76,0000 60.20040 24532 10,910
79,0000 72,0000 24989 114%ub
75,0000 90,0000 303014 12,322
90,0040 0.0000 0,000 12,787
yi1,0000 15,0000 =, 000 12,787
Yu.0000 30,0000 <3 000 12,757
90,0000 «5,0000 =4000 12, 7%%
90,0000 60,0000 =+000 12.7%%
90.0000 73,0000 =+ 000 12,7
30,0000 90,0000 =, 000 1?2. 7%
do=0 A0 *Degress  **Meten o




Chapter 6
CONVENTIONAL PROJECTIONS

Conventional projections ure those which are neither equal area nor conformal, As was
mentioned in Chapter 1, this is not a derogatory term. The conventional projections were
produced in order to preserve some special quality which Is more important to a particular
cartogruphier than equal area or conformality, or to present a projection which is either
mathematically or graphically simple. Since the category of conventional is a catch--all, it
is to be expected that there i+ a wide variety in this cluss of projections. This Is true. Some
of these are really of historical interest. Some are simply convenient, Others have proved
to be cartographic work-horses,

The most useful of the conventional projections are the gnomonic, the azimuthal
equidistant, and the polyconic, both regular and transverse. The simple geometrical projec-
tions of the conlcal and cylindrical, us well ns the orthographic projection of the engineer,
are oxamples of strictly geometrical approuches to the problem. Of mainly historical
interest, are the Voan der Grinten, the plate carrée, the curte paralielogrammatique, the Gall,
the Murdoch, the Cassint, and the stereogruphic variations such as the Clarke, the Jumes,
and the La Hire. Finally, there are such mathematical endevours as the globular,

Clearly, the conventional projections provide maps ranging from the most utilitarian to
the unique.

6.1 Gnomonic Projection [8], |20]

The gnomonic projection requires that the transformation of positions on the surface
of the earth onto a plane be bused upon u projection point at the center of the earth. The
name comes from o gnome's-cye view of the world. The gnomonic projection cun be
purely geometrical construction, However, we shall use spherical trigonometry to obtain
the oblique gnomonic projection, Then, the two limiting cases of the projection, the polar
and the equatorial, will be obtained by particularizing the oblique case.

Figure 6,1.1 portrays the geometry required for deriving the oblique gnomonic projec-
tion, Let a plane be tangent to the sphere at po'nt 0, whose coordinates are (¢g, Ag). The
Cartesfun axes on the plane are such that x is east, and y is north. Let an arbitrary point P,
with coordinates (¢, \) be projected onto the planc to become P!, with mapping coordinates

x,y) '
Define an auxiliary angle, ¥, between the radius vectors CO and CP. From the figure

OP' = tun y 6.1.1),
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Figure 8.1.1. Geometry fur the oblique gnomonic projection
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On the mapping plane, define the second auxiliary angle, 8, which orients OP' with
respect to the x-axis.

x = OP' cos @ (6.1.2)
Substitute (6.1.1) into (6.1,2).

X™atan  cos

- sin Q
o8 U cos (6.1.3)
Also,
y=OP'sing (6.1.4)

Substitute (6.1.1) into (6.1.4).
ymwatan Y sinf

ML LN C6.1.8)

cos

It is now necessary to find ¥ and 6 in terms of ¢, 9g, A, and Ag. From Figure 6.1.1,
by the use of the law of sines

sin (A - Xo) , gin (90° = 8)
sin ¢ sin (90° - ¢)
« C080

cos ¢

sin Y cos @ = sin (A =}p) con ¢ (6.1.6)

Ap»ply the law of cosines,
cos ¥ = cos (90° - ¢,) cos (90° - ¢)
+8in (90° - @) 8in (90° - ¢) cos (A = Np)

= 8in ¢g sin ¢ + cos ¢y cos @ cos (A =Ag) | 6.1.'D

Apply equation (2.10.6)
sin Y cos (90° - 8) = sin (90° - ¢ ) cos (90° - ¢)
- co8 (90° - ¢y ) sin (90° - @) cos (A - Ng)

b
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sin ¢ sin @ = cos ¢, sin ¢

= 8in ¢y cos ¢ cos (A =1g) (6.1.8)

Substitute (6.1.6), and (6.1.7) into (6.1.3), and (6.1.7) and (6.1.8) into (6.1.5),

aS cos ¢ sin (A ~ Np)
8in @g sin ¢ + cos @y cos ¢ cos (A = Ag)

X

aS [cos @g sin ¢ - 8in ¢y cos ¢ cos (A = Ng)]
sin ¢ sin ¢ + cos @y cos @ cos (A = Ng)

ym 6.1.9)

Equations (6.1.9) are the plotting equations for the oblique gnomonic projection. The
grid resulting from a selection of ¢, = 45°, and A = 0° is given as Figure 6.1.2, In this
projection, all the meridians, and tge equator are straight lines, since they are great circles.
An arbitrary great circle distance between points A and C, on the figure, is also a straight
line. The loxodrome between these sume two points appears as a curved line. Compare
Figure 6.1.2 to Figure 5.1.2 for the equatorial Mercator, in which the situation is reversed.
Table 6.1-1 has the plotting coordinates.

| To find the gnomonic polar projection, it is necessary to let ¢, = 90° in (6.1.9).

aScos ¢ sin (A =Ng)
sin¢

X®a

=~ 8 cot ¢ sin (A = \g) (6.1.10)

aScos @ cos (A = Xy)
sin ¢

y-
=38 cot ¢ cos (A —Ap) (6.1.11)

A polar gnomonic grid Is given in Figure 6.1.3, and based on (6.1.10) and (6.1.11). In
this case, all meridians again are straight lines. The parallels are concentric circles, whose
spacing increases as the latitude decreases. Thus, the distortion becomes extreme as the
equator is approached. The equator itself can never be portrayed on the gnomonic polar
projection, since a ray from the center of the earth to any point on the equator will be
parallel to the projection plane. Table 6.1.2 i3 the plotting table for the polar projection.

e s



§

209

Figure 6.1.2. Objlique gnomonic projection
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Table 6.1.1. Gnomonig Projestion, Oblique Case. _‘ | .

QGnomonic Obligue Projection o
Latitude® Longitude® xee yee -
16,0000 a.0000 0,000 «3,602 :
15,0000 15,0000 1.892 3,600 .
16,0000 30,0000 3.977 =3, 364 (o
15,0000 45,0000 .Y 13} -2,873 L
30,0000 0.0000 0,000 =1,709 -
30,0000 15,0000 1,543 1,600 :
30,0000 30,0000 3,128 =1.276 .
30,0000 45,0000 w66 wy bbb v
©5.0000 0.0000 0,000 « 000 =
45,0000 15,0000 1,188 444 {7
45,0000 30.0000 2.447 Y1) L
w8,0000 45,0000 3,738 1.09% -
60,0000 0.0000 0. 080 1.709 b
60,0000 18,0000 11 1,044 :
60,0000 30,0000 1.736 2:.12¢ b
60,0000 +5.0000 2,619 2.680 ‘
75,0000 0,0000 0,000 J.082 :
75,0000 15,0000 : 9?7 3,788
75.0000 30,0000 901 3. 976 o
78,0000 «3.0000 1s437 he3bb f

Yy *Degrons
=0 **Mswn
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Figure 6.1.3. Poiar gnomenie projestion




Latitude®
30,0000
30406000
30,0000
30,0000
30,0000
30,0000
30,0000
#8.,0000
45,0000
45,0000
k. 0000
45,0000
©5,0000
45,0000
60,0800
60,0000
60,0000
60,0000
60.0000
60,0000
60,0000
75.0000
75.0000
75.0000
75.0000
75.0000
75.0000
78,0000
90.0000
90.0000
90,0000
90,0000
90,0000
90,0080

90,0000

"o
x = 0°

Table 6.1.2. Gnomonio Projection, Poler Case.

Longitude®

0,0000
is5.,0000
30.0000
L5,0000
80,0000
75,0000
90.0000

0.0000
15,0000
30.0000
45,0000
60,0000
78,0000
90,0000

0.0000
18,0000
30,0000
45,0000
80,0000
75,0000
90,0000

9.0000
13,0000
30,0000
*5,0000
60,0000
75.0000
90,0080

0.0000
15,0000
30,0000
45,0000
60,0000
75,0000
90,0000

*Dogrons
*%Meton
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Gnomonie Polar Projection
Xeeo
0,000
2:4%9
$¢520
74812
9567
10,671
11,047
0,000
1,681
3,189
4310
$.524
6. 1814
6.378
0.000
«353
1,861
e 004
3:409
30887
Je 682
6,000
1Y 4
o084
1.2808
1.480
1,651

1.7 09

yeo
=41,048
10,871
*9:567
=7,812
8,524
=2.,85%59
+000
‘=be 378
=6,1614
-8, 824

o810 |
=3,189
=1.68
300 0
w3.0682
«3,957
-3.189
'2050#
=1¢841
“,98)
-, 000
=4.709
1,051
=1,480
=1, 2008
=y 888
wobe2
=e000
‘uﬂtu
-, 000
«, 000
=,0(0
=+ 000
=,0(0
=000

R e
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The equatorial gnomonic projection is obtained from (6.1.9) by setting ¢, = 0°,
aScos¢ sin (A = y)
cos ¢ cos (A =2g)

m=aStan(h=2y)

XS -

T
Y= cond 008 (h=g)

(6.1.12)

Figure 6.1.4 gives the equatorial gnomonic projection based on (6.1.12). Again, only the
meridians and the equator are straight lines. The plotting coordinates are in Table 6.1.3.

\\ »° _.A/ "
b oo
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[ ] §.1.4. Gnomonie projastion, equatorial easse
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, Table 6.1.3. Gnomonie Projestion, Bquaterisl Case.
| Gnomonie Rquatariel Projestion
l Latiwe® Longitude® oo yoo
; : 0,0000 0,0000 0. 000 0. 000
; . 0.0000 15,0000 1.709 0. 000
b { 0,0000 30,0000 3,682 0. 000
{ 90,0000 45,0000 6378 0,000
! 15,0000 0. 0000 0,900 1,709
X 15,0000 15,0000 1,709 1,769
) , 15,0000 30,0000 3. 082 1.973
: ' 15,0000 ... 48,0000 ~ €. 378 2,047
L 30,0000 00000 0,000 3.602
i : 30,0000 15,000) 1,709 34812
{ 30,0000 30,0000 3.002 be 292
! 30,0000 45,0000 €378 8,208
; 45,0000 0,0000 9,000 6370
; 4$.0000 15,0000 1.709 6.603
F %5.0000 30,0000 3,082 7363
{ 45,0000 45,0000 63708 9.020

0 *Degrons
=0 *SMeony
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6.2 Azimuthal Equidistant Projection |8}, {20]

The azimuthal equidistant projection (also called Postel's projection) is another projec-
tion directly from the earth onto a plane. The projection law in this case is that the distance
and bearing from the origin of the plotting surface to any other point must be true. Thus,
all great circles through the origin are lines of true length,

Figure 6.2.1 shows the geometry for the oblique azimuthal equidistant projection.
Again, the plane is tangent to the spherical earth at the mapping origin, 0. The coordinates
of the origin ate (dg. Ag). An atbitrary point P on the sphere hus coordinutes (¢, A). Aguin,
the auxiliary angle %etween the radius vectors CO and CP is Y. By the definition of the law
of the equidistant transformation

OP' = ay 6.2.1)
xHOP'cow} 6.9.2
y=OP sing 6.22)
Substitute (6.2.1) into (6.2.2).
X =y cond
6.2.3
y=aysino } ( )
The value of  is found from (6.1.7). \
¥ = cos™! {sin ¢y 8in ¢
+cos @ cos ¢ cos (A = Ny)} 6.2.4)

Since ¥ is restricted to the range from 0° to 180°, y is uniquely defined. Then, sin ¢ is
avallable immediately, Equations (6.1,6) and (6.1.7) can then be used to obtain 0.

sin (A =Ng) cos ¢

conf= v (6.2.9)
con gy 8in ¢ = ain @g cos P cos (A =7y)

sing = 0 2 2 (6.2.6)

sin

Equations (6.2.4), (6.2.9), (6.2.6) and (6.2.3), with the introduction of the scule fuctor,
5, are used to produce an oblique uzimuthal equidistant grid. Such u grid uppears in Figure
(6.2.2). Only the central meridian is  straight line. All other meridians, the parallels, and
the equator appear as curves of varying degrees of complexity. However, any straight line
ruled on the map, from the origin to any arbitrury point will be true length, and true
azimuth. The azimuthul equidistant projection has seen much modem use as rocket and

missile firing charts, and air route planning charts. Table 6.2.1 gives the plotting coordinates.
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1 Figure 6.2.2. Obiique szimuthal equidistant projection
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Table 6.2.1. Azimuthal Equidistant Projection, Obligue Case.

Azimuthal Bquidistant Oblique Projeetion

Latitude®* Longituch® Xoe yoo

0.0000 0.6000 0.000 -5,009

06,0000 30,0000 34878 =he 50w

0.0000 60,0000 Tedlbe2 2,916

0.0000 90,0000 10,0129 « 000

30,0000 0.,0000 0,000 «1,670

30,0000 30,0000 2:874 ' w{,173 ;
30,0000 60,0000 Seleid o342 )
30,0000 90,0000 Tedd2 2.918
60,0000 0, 0000 0,000 1,670
60,0000 30.0000 1,639 2.0008 )
60,0000 60,0000 24974 2,992

60,0000 90,0000 3.678 e B0k
90.0000 0,0000 0.000 5.009

90,0000 30,0000 we 000 5,909

90,0000 60,0000 -,000 5.009
90,0000 90,0000 -,000 5,009

¢ *Degress
No=0 **Meters
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In order to obtain the polar azimuthal equidistant projection, let o = 90° in (6.2.4),
(6.2.5), and (6.2.6). We then have .

v = cos~! (sin ¢) (6.2.75
cosy =sing
= cos (7/2 - ¢)
=7 -9 O (628)

Substitute (6.2.8) into (6.2.5) and (6.2,6).

sin (A~ Ag) cos ¢
cos 6 = gin (n/2 = 9)

= gin (A = N\g) (6.2.9)

cos ¢ cos (A =1Ag)
sin (/2 - ¢)

"e-cos 0\-7\0) (6.2.10)

Equations (6.2.3), (6.2.7), (6.2,9) and (6.2.10), with the inclusion of the scale factor,
S, give the plotting equations used to develop a grid such as Figure 6.2.3. In this figure, all
the meridians are straight lines o, true length, and the parallels are concentric circles, equally
spaced. The coordinates for the polar case are in Table 6.2.2.

sinfm-

The equatorial azimuthal equidistant 'projectlon is obtained by substituting ¢, = 0°
into (6.2.4) and (6.2.6).

W = cos™! [cos ¢ cos (A -2g)) | 6.2.11)
o Yno
sin @ Y] (6.2‘.12)

The plotting equations are then obtained from (6.2.3), (6.2.5), (6.2.11) and (6.2.12), with
the atd of the scale factor, S.
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Figure 0.2.3. Polar gzimuthal equidistant projection




Latitude*
0.0000
0.0000
0.0000
0,0000
30,0000
30,0000
30,0000
30,0000
60,0000
60,0000
€0,0000
60,0000
90.0000
90.0000
90,0000
90,0000
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Azimuthal Equidistant Polar Projection

Longitude®
0.0000
30.0000
60.0000
90,0000
a.c0000
30,0007
60,0000
90.0000
0.0000
30.0000
€0.0000
90,0000
0.0000
30.0068
60,0000
90,0000

¢0 = 90° “Dogrons - '
Ao u 0° **Maters

oo
0.000
54009
8.677
10,019
0.000
3. 340
6. 784
6.679
0,000
1,670
2.892
34339
0000
-, 000
=4000
-4000

Table 6.2.2. Azimuthal Bquidistant Projection, Polar Cese.

+

Yoo
«10,01%
8,677
«%,009
000
“60679
8, 784
=3, 340
« 000
-3, 340
-2,892
-1,670
=+000
-, 000
=e 0 (0
- 0C0
=,0C0
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s " 6.3 Orthographic Projection [20], (22] i
i The orthographic projection is-yet another means of portraying the sphere upon the 1 ,
b plane by a direct transformation, This is another projection that can be developed by a ©
b purely graphical means, In the orthographic projection, the perspective point is placed at ] ;
- infinity. The projection rays fall perpendicularly upon the tangent mapping plane, after -
p intersecting the sphere. The geometry of this projection is shown in Figure 6.3.1 for the Pl
. oblique case. Only a hemisphere or less can be portrayed on this projection. ;
- Again, the auxiliary angle, ¥, between CO and CP, and the auxiliary angle, 6, on the o
3 mapping plane are nesded. From the figure :
O’ = as sin ¢ 6.3.1) |
i . , 3
b x = OP' cos 0} (6.3.2) o
: y=OP'sind Lo
-‘ Substitute (6.3.1) into (6.3.2) : * :
i - .
1 X = a8 sin Y cos 9} 6.3.3) | -
o y=aSsin ysin 0 ‘ Py
L where 8 is the scale factor. O
o P
Equation (6.1.7) again gives L
1 | ¥ = cos™! {sin ¢ sin ¢ + cos ¢, cos ¢ cos (A = Ng)} (63.4) s
. with sin | readily available, since 0 € ¢ < 90. From (6.1.6) and (6.1.8) )
i cos ¢ sin ¢ - sin ¢ cos ¢ cos (A = A,) -
1 - -1 [
{ 6= tan [ sin (A = \g) cos ¢ (6.3.5) o
Equations (6.3.3), (6.3.4), and (6.3.5) give the oblique orthographic projection. ,
The polar orthographic projection can be obtained from the oblique projection by i b
- letting ¢, = 90° in (6.3.4) and (6.3.5). I
B ¥ = cos”! (sin 9) (6.3.6) 11
| 9 = tan~! soos(-d) 63.7 ¥
sin (A = N\g) 'y

Equations (6.3.3), (6.3.6), and (6.3.7) yield a grid such as the one in Figure 6.3.2. The

meridians are straight lines, and the parallels are concentric circles. As the equator is

approached the parallel circles are compressed together, and distortion becomes extreme, r
The plotting coordinates are in Table 6.3.1. U
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Figure 6.3.1. Geometry of the obiique orthographio projection
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Figure 6.3.2. Orthographic poler projection
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Teiie 8.3.1. Orthographic Projection, Poler Case.
Orthographie Poler Projection

Latitude® Longitude® Xee yeoo
0.0000 0.0000 =,000 =6, 378
0.0000 30,0000 3,189 5,824
0,0000 60.0000 8,524 ~3,189
0,0000 90,0000 €378 + 000
30,0000 0.0000 -4 000 -8, 824
30,0000 30.0000 2,762 =be 784
30,0000 60,0000 Lo T84 =2,762
30,0000 90,0000 5,524 ¢ 000
60,0000 0,00080 -4000 «3,109
60,0000 30,0000 1.598% 2,762
60,0000 60,0000 2.762 =1.%599%
60,0000 90,0000 3.189 -y 000
90.0000 0.0000 =e000 =y, 000
90,0000 30,0000 =q 000 -o0C0
90,0000 €0.0000 -e000 -s000
90.0000 90,0000 =-s 000 =, 000

¢ = *Dogress
=0 *Moters
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An equatorial orthographic projection is given by Figure 6.3.3. This type of projection
was used to produce the first of the Lunar maps. The grid is obtained by letting ¢4 = 0° in
(6.3.4) and (6.3.5). This is another limiting case of the oblique projection.

v =cos~! [cos ¢ cos (A =2g)) 6.3.8)
- tan=l tan
0 = tan [ ITIT(.A_-?A_J] (6.3.9)

Equations (6.3.8) and (6.3.9) are then used with (6.3.3) to produce the required grid, In
the figure, the central meridian and the equator are the only straight lines. Notice, again,

from the figure that distortion becomes extreme at the margins of the map. Plotting
coordinates are in Table 6.3.2. .

»
[

o
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E , Teble 6.3.2. Orthographic Projestion, quatoriel Case, . - . .
d Orthographi Rquatorisl Projection i
' Latitude® Longitude® ' Xes yoo .
000000 040000 ¢ 000 « 000 Lo
0.0000 30,0000 3,189 04 000 ]
0,0000 60,0000 5,524 0,000 .
6. L000 9:0.0000 6.378 : 0,000 o
30,0000 040000 «000 L 34409 L
30,0000 30,0090 2762 © 3.189 Y
30,0000 60,0000 v be786 3,409 ' ;
30,0000 9040000 " 8526 L 34189 |
60,0000 0.0000 +000 8524 C
60,0000 3040000 " 1e598 *. 826 N
60,0000 60,0000 20762 s, 8524 L
60,0000 9040000 3.489 8. %26 :
90,0000 0.0000 000 6,378 !

90,0000 30,0000 000 6,378

90,0000 60,0000 +000 6. 378

90,0000 90,0000 080 60 378
T A *Degron \ st

| VYL o *"Metans . A !

......
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6.4 Simple Conical Projections [8], | 22]

‘The simple conical projections to be considered in this section are the one and two
standard parallel, and the perspective cases. All of these are basically graphical projections.

The geometry for the simple conical projection, with one standard parallel, is dis-
played in Figure 6,4.1. The cone is tangent to the sphere at the latitude ¢, , with central

menridian at longitude \. This ia displayed in section, with the cone tangent at point 0. The
constant of the cone, from Section 1.6, is

c=sing, (64.1)
'From the figure
Po ™ & cot @, (6.4.2)

To obtain the spacing of the parallels, let the central meridian be divided truly. Thus,
with the help of (6.4.2)

P=pg =8¢ -¢g) (6.4.3)
From (6.4.1) ,
Gmo(h =Ng) (6.4.4)
Substitute (6.4.1) into (6.4.4),
0=(=ng)sing, (6.4.5)
The absciss is, from (6.4.2) and (6.4.3)
ol X = aS[cot ¢ = (& = @) min [(A =Ng) sin gg) (6.4.6)
The ordlnlm is
y =aS{cot ¢y - [cot ¢ = (¢ -@g)) cos [(A =Ag) sin ¢ )} (64.7)

where S is the scale factor.

The grid for this projection is given in Figure 6.4.2 for ¢, * 45° and Ao = 0°. All of
the meridians are straight lines, and the parsllels are concentric circles, equally snaced. This
grid has frequently been used in atlases. Table 6.4.1 gives the plotting coordinu:s.

The simple conical construction for the two standard parallels case follows from
Figure 6.4.3. The cone is defined to have true length standard paraliels at ¢, and ¢,, with
¢, > ¢, . From the equal spacing criterion along the central meridian

e~ — ey -
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A
Figure 6.4.1. Geametry of the simple conieal projestion with ons stenderd peraliel
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Py

Figure $4.2. Simple conical pepjestion, with one standard pereiiel
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Table 6.4.1. Simple Conlesl Projsstion, One Standard Pareliel,

b Simple Conicel One Standerd Puraliel | :
vl Latitude® Longitude® p L) yoo |
: yeQQUO dev0ul 0,000 «5,009 "
: G+ 0064 1u0000 ‘ 2.098 =hediS :
o Je 0 W $0.0000 koel2l wh, 238 K
: 0.0000 »540000 be00& -3,298 ‘_
v 0.0000 00.00010 3 7.683 =2.027 .-
i J.0000 75,0000 %099 a7 5
% vellVao 93,0000 104204 1. 322 )
: 15,0000 ueG0OD 0,000 =3, 340 :
r 1240040 150080 1.789 «3.174 o
i 1540000 30,0000 3.516 «2.64814 N
. 150000 540000 Sellhe =1.879 Cow
; ‘ 120008 ©0.0000 Y%-1 1. -, 798 :
o 1240000 75,0000 TeT64 934
. 15,0000 900000 $.707 2,083
30.0000 6.0000 _ 0.000 «1.670
- 3u.0000 15,0000 1eb81 «1,532
S Jua 000V 30.0000 24932 1,124
‘ 3040000 «5.0000 hellhd okt
S 3Je0000 80,0000 5,430 s 488
j 40.0000 78,0003 bek30 1.,%39
30,0000 90.0000 7.211 2.4405%
; w»60000 Gs0400 0.000 «000
r w2ed300 18,0400 1174 w109
; +240000 30,0000 2:308 W32
wse0u00 0000 3.3863 « 959 .
*3:00400 ol.0000 4303 1,670 '
«w5+0000 75000060 %.096 2080638 .
«200000C 30,0000 S.718 3.5L6
0u«0000 Uesd 00O 0.000 1.870
©d«0000 14,0000 367 1.7950 ) '
due 0QUO 30,0000 L.704 1,989 - |
600000 4540000 2482 2.377 ~ }' 4 ‘
oQs00U0 »0.0000 3,478 2.903 "
600000 75,0000 34762 3,547 Lo
6J.0000 9G.0000 s 219 ko288

do= o *Dogress
lo-lf *SMatens
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Ay

Figure 8.4.3. Geometry for tha simple coniaal projection
with two itanderd paraliels
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Py =P =a(dy -¢y) 6.4.8)
From the similar triangles in Figure 6.4.3

Py a cos ¢l
-

Py, @&COSQ,
cos ¢,
cos ¢2

COs ¢

cos ¢,

P ™R (6.4.9)

Substitute (6.4.9) into (6.4.8).

cOS ¢ _ «
(4 |- COS',’JI “ﬂ(¢2 -¢])

g a(dy = ¢y)
¢os ¢y
.COS ¢l

P

A radius vector to an arbitrary point P' of latitude ¢ on the central meridian is, with
the requirement of equal spacing applied,

p=p -al¢~-0) (6.4.11)
Substitute (6.4.10) into (6.4.11).
b2 -9 .
p=a -—m‘; -@=9,) (6.4.12)
" o8 9,

The next step is to find a constant of the cone for this configuration. From the
requirement of the circle of parallel to be true leigth at ¢, .

2ma cos ¢ = 2mc 0,

4 cos ¢,

c = (6.4.13)

Py

(6.4.10) |

L e v 2

B N e T e P g P e L a1

e i e e
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Substitute (6.4.10) into (6.4,13)

8 cos ¢
a@; =9;)
m-;

co8 ¢

1

o8 ¢y
¢ -4
COoB @y = CO8 Oy
n —W_

= CO8 0

We now have the equations (6.4.12) and (6.4.14) for a polar.representution of the map
point. The next step Is to obtain the Cartesian plotting equations. These are

$, =9y
cos ¢2
T

X sin [(A - Ng)ey ] (6.4.15)

X = 284 - «(0.~%)

o aS ¢, =9,
yea """""‘""""‘co”bz -(0-9y)

cos ¢

X {1 = cos [(A =Ag)cy 1} (6.4.16)

Equations (6.4.14), (6.4.15), and (6.4.13) yield the grid of Figure 6.4.4. Again, the
meridians are straight lines, and the parallels are equally spaced concentric circles. This
projection has been used quite often for atlas maps where it is not necessary to have either
conformality or equal area. The plotting coordinates are in Table 6.4.7,

‘The geometry for the conical perspective projection is shown in Figure 6.4.5. The cone
is tungent at latitude ¢, and the central meridian has longitude A,.

The constant of the cone, and the radius of the parallel circle of tangency are given by
(6.4.1) and (6.4.2), respectively. From the figure, the distance to an arbitrary latitude is

p=py=atan (o =dg) (64.17)

We now have the polar coordinates for this projection. The Cartesian coordinates, using
(6.4.1), (6.4.2), and (6.4.17) ure

(6.414)
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stondard paraliels

Fipure A.4.4. Simple coniosl projaetion with two
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Latitude®
18,0000
1£.0000

15,0000

1¢.0000

15.0000 ..
- 30,0000

30,0000
30,0000
30,0000
30,0000
4E.0000

48,0000

45,0000
#5.0000
45,0000
60,0000
¢0.0000
60,0000
60.0000
60.0000
7%.0000
75.0000
?5.0000
7%5.0000
75,0000

¢ =N
o2 = 00°
Ao =0

7

LRI

'3 PESTIFY

Table 6.4.2, Simple Coniesl Prajettion, Two Standard Pareliéls.

Simpls Coniosl Two Standard Paraliel
Longitude® Koo
0,0000 0,000
15.0000 1.742
3040000 3,426
k53,0000 4,995
600000 6 398
"0.0000 0,000
15,0000 . Lekd8
3040000 . 2.828 .
koehong he 126
A0.0000 5,284
0¢0N000 © 0,000
1540000 - 1134
30,0000 . - 2,230
45,9000 o282
60,0000 be 165
0.,0000 ‘0,000
15,1000 830
30,0000 1,633
45,0000 2,381
60,0000 3. 049
0.0000 0.000
15,0000 526
30.0000 1.03%
450000 1.509
&0,0000 1,938

*Degrons
**Maters

L b oo At £ 1t o o o o b s o4

yeo

«1., 8670
'$051°
1,030
-, 263
e 82
1000
132

' 8523
1,461
2,024
t. 670
1,774
2,083
2. 508
3. 268
3,340
30416
3. 642
« 010
be 508
5,009
5. 088
5.20%
B 435
5.7%0
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Figure §A4.8. Geometry for the sonlesl perspective projsation
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. x= a8 [cot ¢ = tan (¢ = ¢9)] '.
g | X sin [\ = Ag) sin o] (6.4.18) |
9 i '}
y=aS [cot ¢ = tan (¢ = ¢p)] i :
X {1 = con [(h =Aq) in dg 1} (6.4.19) b
. ) ]
where § is the scale factor. | )
: ~ Equations (6.4.18) and (6.4.19) give the grid of Figure 6.4.6. The parallely are !
i concentri¢ circles, and the meridians are straight lines. The spacing of the parallels increases 4 i
3 in either direction from the standard parallel. Thus, distortion increases significantly as one -
g moves north or south of the circle of tangency. This projection has been used for purely i
flustrative atluses, i
|

5 o3 o e EaLtiimo fex) e
R T R b e g e L g
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Figurs §4.8. Perspective sunieal projestion
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6.5 Polyconic Projection [1], [25]

The polyconic projection is a modified conical projection based on a variation of the
simple conical projection. The essence of the variation is that every paraliel is a standard
parallel, and there are an infinity of tangent cones.

First, it is necessary to derive the polar coordinutes. The central meridian is true length,
and has longitude Ay, Choose some latitude ¢ as the extremity of the map, and the origin
of the coordinate system. Then, the distance along the meridian for a sphetical earth is

dma(-gy) ' (6.5.1)

From (1.6.1), the radlus to the point of tangency for an arbitrary latitude ¢, or the
first polar coordinate, is

p=acoto 6.5.2)

and the constant of the cone {s, from (1.6.4)
cuging (6.5.3)
ThoA second polar coordinate is, from (6.5.3)
g=(A=27g)sing (6.5.4)

The Cartesian mapping equations are
xwpgind }
y=d+p(l=cosd)

(6.5.5)

Substituting (6.5.1), (6.5.2), and (6.5.4) into (6.5.5).
X =uScotdsin [(A =Ng) sin ¢]
y=aS{¢~¢ (6.5.6)
+cot ¢ [l = cos [(\ =2Ag) sin ¢]]}

where 8 is the scale factor.

Figure 6.5.1 iy the rogular polyconic projection. The central meridian and the equator
are the only straight lines. All other meridians are curves. The central meridian, the
equator and all paraliels are true length. Thus, the distortion occurs in angles, areas, and
meridianal tength for all meridiana except for the central meridian. The polyconic projec-
tion has been used quite often in atlas and road maps, and its wide acceptance has juatified
its existence. A projection table for the polyconic projection is given in Table 6.5.1.
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Figure 8.5.9. Regyler palysonie projestion
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Latitnde®
0.0008
00,0000
0.%000
c.0000
0.0000
g«01000
‘0.0000
30.00¢00
30,0000
30,0000
30,0000
30,0000
30,0000
30,0000
60,0000
8Q.0000
60,0000
60.0000
60,0000
©0,0000
¢0,0000
90,0000
90,0000
30,0000
90.0000
90,2000
80,0090
90.00400

=0

;-

Tabie 6.5.1. Roguier Palyesnie Projestion.

Roguler Pelyesnis

Longitude® Xoe
040000 0,000
30,0000 30340
£0,0000 6. 679
901090 10,019
120.0000 13,359
120.0000 16,698
150,000 20, 03"
n.0000 0,000
30,9000 2,489
60,0000 Be520
90,0000 74812
120.0000 . 547
150.0000 10,674
120.0000 11,047
0.0800 0, 090
3049000 1,618
60,0000 24900
99,0000 3. 601
120,000 Je570
1%0.0000 2,029
180.0000 1,506
0.0000 0,000
30,0000 =~ 000
£0,0000 «. 000
20,0000 =0 000
120,0000 - 000
180,0000 =4 00)
140,0000 +000

‘Deges ““Momn
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yeo
0.000
0. 000
0. 000
0, 000
0,000
0,000
8,000
3. 340
3. 716
v, 820
t.578
8 063
11,528
Lb, 387
6,679
r.051¢
8,093
9. 892
11, 240
12,726
13. 723
10,019
10.049
10,0149
10,019
10,0149
.0,019
16,019
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The transverse polyconic case follows from applying the rotation formulas of Section
2.10 to the plotting equations for the regular case. Write (6.5.6) as

X = &S cot hsin [(« = ag) sin h)
y=aS {h- hy (6.5.7)
+ both [1 = cos [ = o) sin h)]}

}v.!;m h, hy, @, and @, are measured in the auxiliary coordinate system, and S is the scale
tor,

The rotation formulas, from (2.10.4), (2.10.5), and (5.10.6). ht'or the transverse case,
with O, are

sinh =cosgcos (A -Ap)
cosacosh=sin ¢ (6.5.8)
tana = sin A = \,) cot ¢
Equations (6.5.7) and (6.5.8) are used to derive grids such as the one in Figure 6.5.2.

The transverse polyconic projection has also enjoyed wide acceptance in atlas and road
maps.

“.
4

~18° o 1
Figure 6.8.2. Transverse polyconic projection

e s e en 2o ¢S L 309 it HTH T < At e b S b AR - Ta b




TR, R MR A T e T IS T T 2 TR e v

TR

TR T T T

i

SR S T I

—_

245

6.6 Simple Cylindrical Projections (22]

Two simple cylindrical projections will be considered. These are the perspective and
the Miller. In both cases, the sphere is transformed to the intermediate developable surface,

the cylinder,
The perspective projection is a graphical representation. ‘

Figure 6.6.1 shows the grid of the cylindrical perspective projection. The abscissa of
the plotting equations is simply

x = a8 (A = Ag) (6.6.1)

where s is the scale factor, and ), is the longitude of the central meridian. The ordinate
follows from consideration of the figure

y=aStan¢ ' (6.6.2)

Then, (6.6.1) and (6.6.2) are evaluated to obtain the grid. Distortion becomes very
m'm uihigher latitudes are reached. Thus, this projection has served in the role of an
ustration.

The Miller projection calls for the oquator to be 4a in length, and the meridian to be ma
in length. Thus, the meridians are true, but the equator is compressed. The total area of
the map is 4xa?, which is, by design, equal to the total area of the sphere. The plotting

equationa are simply

xa2 8y
(6.6.3)
y=aS¢

where A is the longitude of the central meridian, and A, Ay, and ¢ are in radians. Again, S
Is the scale factor.

The grid resulting from (6.6.3) is shown in Figure 6.6.2. In general it is better to con-
sider this projection as conventional rather thun equal area. The distortion at middle
latitudes is lesa than in the equal area cylindrical, but it is greater at the equator. A plotting
table is included as Table 6.6.1.
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Figurs 6.8.1. Perspective oylindrionl projection
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: 3
3
3
2
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Latitud®
0,000¢
0s00449
0.0003
g.0000
0s0000
Ue0000
0.0000

30,0000
30,0000
3u.0000
3L.0000
30.0000
30,0000
30,0000
600000
©0.0000
60,0000
6u.0000
60,0000
6U.0000
60,0000
$0,0000
§0.0000
G0.0000
90,0000
50,0000
Su,0000
90.0000

Ao = O°

*Degrees

Table 6.8.1. Simple Cylindrioal Projection.

Longitude*
" 00000
30,0000
£0.,0000
3040000

42040000
4500000

18040000
vel000
30,0000
607000
30,4000
120.,34000
1505000
18040000
d.0000
300000
6040000
900000
120,0000
150.0000
10,0000
0.0000
30,0000
60,0000
90,0000
120.0000
150.0000
180,0000

**Meters

Miller Cylindrioal

L

U.000.

2.1268
© hedB2
Be378

8,504

10,630
124756
0,000
24126
4e 252
be378
3.504
104630
12.756
0,000
2+12€
4252
6378
8.504
10,630
12756
0,000
2.42¢
282
6.378
8,504
10.630
12,756

v..
0. 000
0.0C0
0,000
2. 000
0.000
0.000
0s000
3,340
3e340
3. 340
34340
303410
34340
Je300
8,079
Be679
6.079
6.679
8.679
6:.679
6.679
10,019
10,019
10,019
10.019
10.019
10.019
10,019

i e,
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6.7 Plate Carrée

The Plate Carrée is a simple cylindrical projection with the equator as the standard
parallel defined by a simple mathematical rule,

The meridians are true length straight lines, parallel to each other. The meridians are
divided as on the sphere, so the parallels are their true distance apart. The parallels and the
equator are also straight lines, porpendlcular to the meridians. The equator is also divided
as on the sphere.

The result of this is the square grid of Figure 6.7.1. The plotting equatlom which
produce this grid are

X % aS(A =)o) 1 . (6.7.1)
y ™ aS¢

where A, is the longitude of the central meridian und § is the scale factor. The angles A, Aq,
and ¢ are in radians,

The distortion in length is extreme along the parallels, The poles, which are points in
reality, arc represented as straight lines, The projection pretends at neither conformality nor
equivalence of area, It does serve us a reasonable diagrammatric representation of data, and
is found in many technical reports where no greater cartographic sophistication is required.
The Plate catrée is a map done on standard graph paper.

_“G

-100° |-180° |-120° |-90° [-80° [-30° [0° 0 | s e &T

Figure 8.7.1. Plate carree projection
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6.8 Carte Parallelogrammatique

The carte parallelogrammatique, or die reckteckige plattkarte, has a fancy name for a
simple projection. It is essentially a variation for the plate carrée, in which two standard
parallels, equally spaced around the equator, are taken as true length, The meridians are
also true length, The plotting equations, in which ¢, is the latitude of the standard parallels,
and A, is the longitude of the central meridian, are \

x=aScosgy * (A=)
_ y=aSo
in which ¢, \, and )\ are in radians, and $ is the scale factor.

(6.8.1)

A grid developed from (6.8.1) is given in Figure 6.8.1. This projection has seen some

limited use in atlases, ‘It was developed as a means of reducing some of the distortion

inherent in the plate carrée. The area between the standard parallels is smaller, and that
poleward from each standard parallel is larger than on the earth,

dp = %0
Pigure 8.8.1. Carte parsilelogrammatique projection
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' 6.9 Globular Projectlon 181, [22)
The globular projection isa convential means of portraying a hemisphere withina

~dircle. In this projection, the central meridian, with longitude Ao, and-one half of the

equator are diameters of the circle, The central meridian and the equator are divided truly,
Define a typical circle of parallel of latitude, ¢, “This is shown in Figure 6.9.1. Lelt d

 be the distance from the equator to the specified.latitude dlong the central meridian. Letc

be the chord length, and h be the distance from the circular arc'to the chord, Let p bo the

polar radius vector. :
The distance along the central meridian, between the equator, and ‘the circle of lutitude

is
d=ap (6.9.1)
From the figure | '
" ¢=2acosd (6.9.2)
(6.9.3)

h=asing-ag

From the geometry of the circulur segment
¢ =/4h(2p - h) (6.9.4)

Substitute (6.9.2), and (6.9.3) into (6.9.4), and re-arrange, to obtain the first polar eodrdi-
nate, o,

c? = 4h(2p - h)

2
C
2p-h=om

o2
p=h+ o
Lfy o, &
o3 ) |
[ M_ﬁ_
5 [a (sing-9¢)+ 4n(sln¢‘¢)]

LA cos? ¢
-z-[si|1¢-¢+ sin¢-¢] 6.9.5)

The second polur coordinute, 0, follows from the geometry of the virculur segment,
also.

W fari e = - e
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Figure 6.9.1. Geometry for the globuler projection
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6 = 2 tan™! ( 2h) (6.9.6)

Substitute (6.9.2) and (6.9.3) into (6.9.6)

« ponel 2.00:2]
0 =2 tan [a(dn¢-¢)

-2 tan~! [;1-2"9;?-':%] 6.9.7

The parallels are divided equally. Thus, a second auxiliary angle Y can be defined by
the projection

v .&
A"'Ao T

VE(A=n)/m (6.9.8)
Substitute (6.9.8) into (6,9.7).
- -1 (2c08¢
U2\ =2) tan (sin i ¢) (6.9.9)

The cartesian plotting equations are

x=psiny }
(6.9.10)
y=d+p(l -cosy)

Substitute (6.9.1), (6.9.5) and (6.9.9) into (6.9.10).

Y cou’ﬂ]
X [shw -d+ ino-o

X sm[z(x-xo)tan-' ( T ¢)] (6.9.11)

cond [
sing-¢

{l-wu[z(x ~ho) tan" '( 2o %)]}} s (69.12)

y= {u¢+ -;-[sin¢-¢+

where S is the scale fuctor.

i rT . et
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Equations (6.9.11) and (6.9.12) produced the grid in Figure 6.9.2. The globular projec-
: tion has been used for atlas maps. 4

i T T e e

R IR

W0
WK A
ity
i
Jq i
g \
‘.

W B LD -7

T A T

EE TS

OB PR

J I PV S

Figure 0.0.2. Globuler projestion
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‘manner to the sterographic projection of Section 5.4.
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6.10 Gall's Projection [22)
* Gall's projection is a stereographic cylindrical projection, with two standard parallels

at 45° north and south. Figure 6.10.1 shows the geométry for the development. The
meridians are spaced truly on the two standard parallels, Thus, the abscissa is

Xxw (aScoc -})(k-ko)

» 0,70711 aS(A = No) (6.10.1)

where A, is the longitude of the central meridian. The ordinates are obtained in a similar

y= 17071 aS tan & ©(6.102)

2
In (6.10.1) and (6.10.2), Sis the scale factor, and A and Ay are in radians.

This projection has been successfully used to produce world maps, since the dvistcrtion
is tolerable. However, it must be kept in mind that neither cunformality nor equal area is

preserved.

R -
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Pigure 6.10.1. Gyll's projection
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6,11 Van der Grinten Projection {22}

The Van der Grinten. projection contains the complete sphere within u cirble. This
projection has seen some use in atlas and National Geographic Soclety maps, While it dovs
not pretend to display conformality or equal area, it does present a pleasing representation
of the earth's surface. There Is neither the east west extension in higher latitudes that i
characteristic of the Mercator, nor the extreme compression in these areas, as shown in the

sinusoida! or Mollweide.

Figure 6.11.1 gives the geometry of the projection. The equator is divided equally,
and is represented by the line VQ. The line NS is the central meridian, which is aiso divided

equally.

Conuider n purely graphical construction of this projection. Join N and V. Locate an
arbitrary latitude A’ on NO, where

. 2
OA'=NO 5

i '2N0% (6.11.1)

Draw AA’ parallel to VQ. The intersection of AA’ with NV is B. Join B and Q. The inter-
section of BQ and NO defines the point C'. Draw CC' parallel to VQ. Point C constitutes
one of the necessary points of the projection. Its symmetric Image about NO is a second
such point. C” connect A and Q. AQ intersects NO at D. This is the third point necessary

to completely define a circle of paraliel,

A circular arc, whose radius is uniquely defined by the location of points C, D, and C”,
is drawn to obtain a circle of parallel.

Meridians are also circular arcs, These are fit through the poles and the equatorial
point for the particular longitude. From the central meridian, of longitude A, , the point on

the equator is
(A =2Np)
d= VO - 6.112)

‘The usual means of constructing u map using this projection is to inscribe the grid, and
then plot polnts on this grid as functions of ¢ and \.




At e i L LT

258

L e S R R S S R aBr

B

ot AR R S0 TN O R FEE L2

Pigure 8.11.1. Van dar Gainten’s projection
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6.12 Murdoch's Projection |22}

from the simple conic with two standard parallels. There are three variations of this projec-

}
!.
Murdoch’s projection has been used in atlases. It is a sscant projection, but differs o }‘
tion, but only one of these variations will be derived from Figure 6.12.1. '

In the first variation, the parallels are spaced their true distance apart on the central

meridian, with longitude Ay. The constant of the cone is '
| ¢, +¢, 4
2;:,» c=sin| =3 ) (6.12.1) !
\x where ¢, is the lower standard parallel, and ¢, Is the upper standard parallel. _
‘,, From the conditions of equal spacing ‘ ‘ '
. L
| ¢ -4 o
3\ CB e L \ , "J
. | =g gy | (6.12.2) ;
P The middle latitude is b
9 + %,
p y= 3 (6.12.3)

The radius of the middle parallel is

TB = CB cot (6.12.4)
| The radius of the lower standard parallel is
g py=TB+ua(y=-9,) (6.12.5)
- Thus, the first polar coordinate is

pe=p, -ald-¢) (6.12.6)
Substitute (6.12.2), (6.12.3), (6.12.4), and (6.12.5) into (6.12.6). 2

. 2 sin !—2——¢z - m) ] ]
' p=a cot(—l—-—l) ~(®-9,) 6.12.7 o
93 - ) 2 J’
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Figure 8.12.1. Geometry for the Murdoch projection




{.

2

E; 261

5\ The second polar coordinate is .

g! | 6= (X =Ag)o 612y
8 Substitute (6.12.1) into (6.12.8), |

! | ) o

| 0= (A= Ag) sin (-1--?-—’-) (6.12.9)
i - . h

|

The cartesian plotting coordinates are

= ' x = {psin 018

I (6.12.10)

y® (py =p(l-cosf)]S

Equations (6.12.5), (6:12.7), (6.12.9) und (6.12.10) produce the desired grid, where S
is the scule fuctor, ‘

= e T T
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6.13 Stereographic Variations |22)

Severnl variations of the stereographic projection have been developed to reduce
distortion in regions of particular interest. These are the Jumes, the La Hire, and the Clarke.’
 All of these are geometric perspective projections, and can eusily be obtained by an.alters-
tion of the stereographic projection of the sphere. Figure 6.13,1 shows the location of the
projection points for a polar projections of these variations as compared to those of the
gnomonic und the stereographic. La Hire took the projection point as 1.71 times the
radius of the earth, James used 1,367 times the radius, and Clarke’s value varied between
1.35 and 1.65 times the radins, We will consider a derivation of the plottiag equations for

4 polar projection,
From Flgure 6,13.2,

. b
tan ¥ = =T

p=a(l+c)tany
1t is now neccssury' to relate ¥ und ¢,
AB =4 5in (90° - ¢)

=4 Cos ¢

AB

tan y = mos 90° =)+ ¢')

= AB
a(sing+ch

Substitute (6.13.2) into (6.13.3)

ncoso
a(sing+ )

. _Los

sing +¢

tan Y =

Substitute (6.13.4) into (6.13.1).

J Al +c)cose
Sin g + ¢

1P 3 i G

(6,13.1)

(6.13.2)

(6.13.3)

(0.13.4)

€6.13.5)
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‘ ' Projection plane
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James % !

Clarke

1 LaHire d

Figure 6.13.%. Projection points for the stersog